
mmu

mmu ii

COLLABORATORS

TITLE :

mmu

ACTION NAME DATE SIGNATURE

WRITTEN BY July 10, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

mmu iii

Contents

1 mmu 1

1.1 mmu.doc . 1

1.2 mmu.library/--Background-- . 3

1.3 mmu.library/--Patches-- . 4

1.4 mmu.library/CreateMMUContext . 5

1.5 mmu.library/DeleteMMUContext . 11

1.6 mmu.library/EnterMMUContext . 12

1.7 mmu.library/LeaveMMUContext . 13

1.8 mmu.library/CurrentContext . 14

1.9 mmu.library/AddContextHook . 14

1.10 mmu.library/RemContextHook . 16

1.11 mmu.library/AddMessageHook . 17

1.12 mmu.library/RemMessageHook . 19

1.13 mmu.library/ActivateException . 20

1.14 mmu.library/DeactivateException . 21

1.15 mmu.library/GetPageSize . 21

1.16 mmu.library/RemapSize . 22

1.17 mmu.library/SetProperties . 23

1.18 mmu.library/SetPageProperties . 29

1.19 mmu.library/RebuildTree . 32

1.20 mmu.library/RebuildTrees . 33

1.21 mmu.library/GetProperties . 35

1.22 mmu.library/GetPageProperties . 37

1.23 mmu.library/AllocAligned . 39

1.24 mmu.library/LockMMUContext . 40

1.25 mmu.library/UnlockMMUContext . 41

1.26 mmu.library/AttemptLockMMUContext . 41

1.27 mmu.library/LockContextList . 43

1.28 mmu.library/UnlockContextList . 43

1.29 mmu.library/AttemptLockContextList . 44

mmu iv

1.30 mmu.library/AllocLineVec . 45

1.31 mmu.library/PhysicalPageLocation . 46

1.32 mmu.library/PhysicalLocation . 47

1.33 mmu.library/DMAInitiate . 48

1.34 mmu.library/DMATerminate . 50

1.35 mmu.library/GetMapping . 51

1.36 mmu.library/ReleaseMapping . 52

1.37 mmu.library/NewMapping . 53

1.38 mmu.library/CopyMapping . 54

1.39 mmu.library/DupMapping . 55

1.40 mmu.library/CopyContextRegion . 56

1.41 mmu.library/SetPropertiesMapping . 57

1.42 mmu.library/SetMappingProperties . 58

1.43 mmu.library/GetMappingProperties . 60

1.44 mmu.library/SetPropertyList . 61

1.45 mmu.library/GetMMUType . 63

1.46 mmu.library/SuperContext . 63

1.47 mmu.library/DefaultContext . 64

1.48 mmu.library/WithoutMMU . 65

1.49 mmu.library/RunOldConfig . 65

1.50 mmu.library/SetBusError . 66

1.51 mmu.library/GetMMUContextData . 67

1.52 mmu.library/SetMMUContextData . 68

1.53 mmu.library/BuildIndirect . 69

1.54 mmu.library/SetIndirect . 73

1.55 mmu.library/SetIndirectArray . 74

1.56 mmu.library/GetIndirect . 76

mmu 1 / 77

Chapter 1

mmu

1.1 mmu.doc

--Background--

--Patches--()

ActivateException()

AddContextHook()

AddMessageHook()

AllocAligned()

AllocLineVec()

AttemptLockContextList()

AttemptLockMMUContext()

BuildIndirect()

CopyContextRegion()

CopyMapping()

CreateMMUContext()

CurrentContext()

DeactivateException()

DefaultContext()

DeleteMMUContext()

DMAInitiate()

DMATerminate()

mmu 2 / 77

DupMapping()

EnterMMUContext()

GetIndirect()

GetMapping()

GetMappingProperties()

GetMMUContextData()

GetMMUType()

GetPageProperties()

GetPageSize()

GetProperties()

LeaveMMUContext()

LockContextList()

LockMMUContext()

NewMapping()

PhysicalLocation()

PhysicalPageLocation()

RebuildTree()

RebuildTrees()

ReleaseMapping()

RemapSize()

RemContextHook()

RemMessageHook()

RunOldConfig()

SetBusError()

SetIndirect()

SetIndirectArray()

SetMappingProperties()

SetMMUContextData()

mmu 3 / 77

SetPageProperties()

SetProperties()

SetPropertiesMapping()

SetPropertyList()

SuperContext()

UnlockContextList()

UnlockMMUContext()

WithoutMMU()

1.2 mmu.library/--Background--

PURPOSE
The mmu.library provides functions for MMU related operations
as write- or read-protecting certain areas of memory for a
given set of tasks, or marking memory regions as "swapped"
virtual memory support. It offers an abstraction level on top
of the actual MMU and a unified interface for MMU purposes.

The MMU lib does NOT implement virtual memory, that’s the purpose
of another library - the memory.library. There’s no much reason why
any application except the memory.library and probably some debugging
tools should call this library directly. The memory.library functions
on top of this library should suffer for "all day purposes".

The basic object administrated by this library is the "context". A
"context" is the software abstraction of a MMU translation tree, it
keeps the information of the status of memory. The mmu.library
provides a "global" context that represents the MMU translation tree
for all tasks. It is build by the init code of the library either by
snooping the already existing MMU translation tree or by building an
own tree by looking at the available memory and expansion devices.

Programs can build own contexts by using the MMU library functions and
may enter or leave the contexts generated in this way. Several tasks
may share one context, as they represent, for example, multiple
"threads" of one single program. Thus, the notation used here is some-
how turned around: A "context" in the amiga world is called "process"
in unix, and a "task" or "process" in the amiga world is called a
"thread" usually.

Tasks that do not enter an own context explicitly share the common
global context. Even though it is possible to change the global
context, this technique should be used only by debugging tools as the
enforcer. It could, for example, mark unused areas of the memory as
well as the first 4K as "invalid".

The MMU library provides two "hooks" for each context, the
"bus error hook" and the "segmentation fault" hook. The first hook

mmu 4 / 77

is called if an access to an invalid memory location is detected, or
a write to a read-only memory area. The second is called if an access
to a memory page marked as "swapped out" is detected. It’s part of
the service of the MMU library to keep these two access violations
apart.

The default hooks call simply the exception handler of the running
task, which generates by default the well known "guru". It’s up to
programs on top of the MMU library to setup useful hooks. An enforcer
like tool might set "bus error hook" to print some useful information
about the access violation, the memory.library will set the
"segmentation fault" hook to swap in the memory in question.

The hooks are really "low-level" routines and are executed in super-
visor mode, and therefore very limited in power.

The library provides itself a ready-for-use hook function which
sends a message to a task to be specified and suspends the task
that caused the bus error until the message is replied.

MMU trees are managed on two levels, a "software abstraction level"
which is comfortable and easy to use. Memory "properties" of large
regions of memory can be redefined quite easely with one single
call, but rebuilding the MMU table tree from this abstraction layer
is a lengthly operation and requires quite a lot of CPU power
not available in critical applications.
Therefore, a more "hardware based" approach is available which
modifies the existing MMU table "on the fly" and is therefore
rather fast. However, memory pages to be handled like this must
be marked with the MAPP_SINGLE property to tell the library to
build the MMU table in a special way to allow fast modification
and to bypass some possible optimizations (e.g. "early page
terminators" and "invalid descriptors not at page level").
Modifications on this level are never seen by the abstraction
level above and should be used only once the MMU tree is complete.

If that is, too, not fast enough, the MMU library allows building
pages using "indirect descriptors". That is, the page property
flags are given by a true hardware descriptor you provide. This
makes code CPU specific, obviously, but has the advantage that
page properties can be modified by a single long word "poke" in
your program, and the proper ATC flush. This is almost "hardware
banging", with some support.

This method has one important drawback, namely that the library
is no longer able to disable caching for DMA transfer to and from
this page. Hence, NEVER EVER access an indirect page by DMA.

1.3 mmu.library/--Patches--

To perform its job, the mmu.library has to install a number of
system patches. I tried avoid this as best as possible, but some
installations have to be done.

The following patches are installed:

mmu 5 / 77

exec/CacheControl: Replaced partially by a function that guarantees
that the data cache remains off when the mmu.library
builds descriptors.

exec/ColdReboot: Replaced partially by a function that removes the
mmu.library installed MMU trees. This is done to
restart the processor with a clean MMU setup.

exec/Alert: Replaced partially. The Alert() replacement routine
will check whether the alert caused is fatal or not,
and will Disable() and unload the mmu.library
installed MMU tree if this is the case. Since a
deadend alert will go over into a reset without
calling ColdReboot(), this must be done here
separately to ensure that the machine restarts
properly.

exec/AddMem; Adding memory with a MMU setup active would or would
not mean that the MMU table must be adjusted to
reflect the changes. This function should not be
called once the system is setup and running.
It is here patched to an Alert().
The original routine is not called because some
68040/68060 libraries modify the MMU table on their
own in case this happens.
I don’t think this routine is really required unless
on startup, but in case it is I will replace it
completely on demand.

exec/AddConfigDev: Patched to an Alert() for just the same reason than
above.

exec/CachePreDMA: Replaced completely by a MMU library routine that
disables copyback mode for non-aligned pages and
translates the logical address passed in to the
physical address, by means of the mmu.library
public context.

exec/CachePostDMA: Ditto. Replaced completely by the MMU.library.

1.4 mmu.library/CreateMMUContext

NAME
CreateMMUContext - Build a new MMU context.

SYNOPSIS
context = CreateMMUContextA (tags);
d0 a0

context = CreateMMUContext (tag1, ...);

mmu 6 / 77

struct MMUContext * CreateMMUContextA (struct TagItem *);

struct MMUContext * CreateMMUContext (Tag tag1, ...);

FUNCTION
This function builds a new MMU context.

INPUTS
tags - Tag items for the context to be created.

Currently defined tags are:

MCXTAG_COPY - build a copy of the context * passed in,
if the pointer is NULL, build a copy of
the global default context. (RECOMMENDED!)

If this tag item is not given, all context
addresses will be marked as MAPP_BLANK. Most
likely not what you want.

If you specify a different page size than that
of the context you want to clone, you should
specify the MCXTAG_ERRORCODE as well and study
the return code carefully. The mmu library might
have performed some rounding to fit the old
table specifications into the new table layout.
In worst case, this will make your new table
unusable. It is therefore in general not a good
idea to specify a page size larger than that of
the cloned context. Even though the library
itself allocates all its internal structures
aligned to "worst case" page sizes, this might
not be true for external user programs.

MCXTAG_EXECBASE - allow accesses of AbsExecBase and all accesses to
valid memory in the first page, even if this
page in the MMU tree - the "zeropage" - is
marked as invalid. This is an important feature
if the mmu.library is used to implement an
Enforcer type program.
Accesses will be emulated in software and are
hence *slow*. They should be avoided, either by
running Os 3.0 or better, or by using a tool like
"MuMove4k".

AbsExecBase accesses are handled with highest
priority and might be faster than the rest of the
emulation, even faster than the Enforcer, even
though they’re still slower than "the real thing".
It is not guaranteed that the library will really
read AbsExecBase from location four, dependent on
some internals, it might give you a cached copy
instead. This means usually no problem since
AbsExecBase must not change while the machine is
up and running.

mmu 7 / 77

This option defaults to TRUE.

For more quirks about the zeropage, read the
MCXTAG_ZEROBASE tag documentation below.

MCXTAG_BLANKFILL - defines a ULONG word fill value for blank
memory regions.

This ULONG is read by the CPU in case a program
tries an access to "empty" memory regions. It
defaults to 0L, but other values might be use-
ful for debugging.

MCXTAG_MEMORYATTRS- An exec memory attributes specifier to be used
for allocating memory for the (hardware) MMU
tables. Defaults to MEMF_PUBLIC, check
exec/memory.h for other possibilities.

MCXTAG_PRIVATESUPER A boolean value, either TRUE or FALSE. If TRUE,
build a private MMU supervisor table for this
context, independent of the default supervisor
Context. BE WARNED! This means specifically that
possible modifications of the default supervisor
context will not be carried over to your private
supervisor table.
Even if you pass in FALSE here, the library might
still ignore your choice and build a private
supervisor table anyways. This happens if the
table layout you’ve chosen is different to the
default table layout, making the user tree in-
compatible to the default supervisor tree.

MCXTAG_ZEROBASE - This option takes only effect if MCXTAG_EXECBASE
is TRUE and the first page of the MMU table is
invalid. This means that the MMU library will
emulate accesses to valid memory in the first page
which remains unavailable to implement an
"Enforcer" function. This tag provides a base
address to be used by the emulation as physical
base address.
This tag defaults to NULL meaning that the
library will redirect accesses to the true
zeropage, making it available temporarely, but
any other memory location - provided it is page
aligned - can be specified here as well. This
is important if the zero page gets remapped to
a different location, and an Enforcer type
program is run later on. The zero page remapper
should specify this tag to redirect accesses
transparently, even if an Enforcer type
application invalidates the zero page. Failing
to do so would make the MMU library emulating
the access to the incorrect, non-remapped memory
location. Since other programs might want to
build a private MMU table with a different
table size, it is *NOT* enough to align the

mmu 8 / 77

remap destination of the zeropage to
GetPageSize()

boundaries,
RemapSize()
alignment is required!

THIS IS AN ADVANCED FEATURE.

MCXTAG_DISCACHEDES A boolean tag item. If set to TRUE, the memory
that keeps the descriptors is cache-inhibited.
This works around some problems that appear if a
program attempts to hack on the MMU itself. The
mmu.library code has no problems with descriptors
in non-cacheable memory. Note, however, that the
memory will be only non-cacheable "as seen" from
the context itself. It will *NOT* change the
cache mode as seen from other contexts, even from
the supervisor Context of the given Context.

HACKING THE MMU TABLES IS ILLEGAL

MCXTAG_LOWMEMORYLIMIT Define a boundary in the zero page such that
accesses to addresses higher than this boundary
will be emulated in software. This is mainly for
68060/68040 support under Os V37 and V38 where
chip memory started at 0x400 inside the zero page.
(NEW for V42)
The MuLib checks the chip memory base address on
startup and provides a useful default.

The next tag items define the MMU table layout. A logical address,
used as input for the MMU, consists of exactly 32 bits. These
bits are now split from the left to the right into groups to define
a "path" in the MMU tree. Each "level" of the MMU tree should be
considered as an array of pointers, pointing to the next lower
level of the tree. The nodes of the tree are contain the descriptors
that define how the address belonging to the path from the root to
this descriptor should be handled. For example, consider a three-
level tree with 7 bits for level A and B, 6 bits for level C and
12 bits for the page. The address 0x01feabcd would be used like this
to find an descriptor:

hex 0x01feabcd is binary

----7--- ----7---- ---6--- ------12------- bits
0000 000|1 1111 11|10 1010| 1011 1100 1101
_______/________/______/_____________/

| | | |
| | | |
V | | |

Index into level A of the MMU tree is 0, hence the first pointer
is read. The MMU obtains now another array of pointers, called
the level B. | | |

| | |
V | |

Index into level B of the MMU tree is 127. The MMU uses
the last pointer from the table obtained in the previous

mmu 9 / 77

step. | |
| |
V |

Index into level C of the MMU tree is 42. The MMU
uses, hence, the 42nd pointer of the array pointed
to by the 127th pointer of the level B array. This
is now the "page descriptor", defining the base
address for the next step.

|
|
V

This is now finally the page offset, 0xbcd in this example. It
is added to the base address from the page descriptor in level C.
If the address is not "remapped", the base address would be
identically to the first 32-12 = 20 bits of the physically address.

MCXTAG_DEPTH - Depth of the MMU tree to build. Defaults to
the depth of the global public context.

Legal values are 1..4 for the 68020/68851 and
the 68030, but the 68040/68060 supports only
trees of depth 3.

MCXTAG_LEVELABITS - Number of bits of the logical address that make
up the level A of the MMU tree. 2^bits is the
number of entries on this level of the tree.

The 68020/68851 and the 68030 support here
values from 1..15, the only legal value for
the 68040 and 68060 is 7.

The MMU library will pick a reasonable and
system dependent default for you if you don’t
specify this tag item.

MCXTAG_LEVELBBITS - Number of bits for the level B of the MMU tree,
unused if the depth is smaller than two.

Legal values are 1..15 for the 851 and 030, and
7 as only possible value for the 040 and 060.

MCXTAG_LEVELCBITS - Number of bits of the level C of the MMU tree,
unused if the depth is smaller than three.

Arguments may range from 1..15 for the 851 and
030, and must be either 5 or 6 for the 040 and
060.

MCXTAG_LEVELDBITS - Number of bits in the level D of the MMU tree,
only used if the depth is four and therefore
unused on the 040 and 060.

Must range from 1..15.

MCXTAG_PAGEBITS - Number of bits to be used from the logical
address as the page offset. 2^bits is the

mmu 10 / 77

page size.

Legal values are 8..15, giving 256 bytes up
to 32K pages for the 68020/68851 and 68030, or
12..13 defining 4K resp. 8K pages for the
68040 and 68060.

The default is the page size of the global
context.

All the "..."BITS specifications MUST sum up to 32 since a logical
address consists of exactly 32 bits. You may leave out some or all
of these tags, the MMU library will keep care of the rest and will
chose reasonable defaults for you.

MCXTAG_ERRORCODE - pointer to a ULONG the MMU library will fill
in with an error code in case building the
MMU tree failed. It will be set to 0L if the
function succeeds. The following error codes
have been defined:

CCERR_NO_FREE_STORE - the library went out of memory.
CCERR_INVALID_PARAMETERS - the parameters specified by the

tags are invalid.
CCERR_UNSUPPORTED - the parameters are valid, but

not supported by the hardware.
CCERR_TRIMMED - the library performed some minor

adjustments on the MMU table passed
in for cloning. The cache modes
might not be optimal due to some
roudings that have to be performed,
but the MMU table should work in
general.

THIS IS NOT AN ERROR, you will get
your new context.

CCERR_UNALIGNED - the library had to perform heavy
rouding in the MMU table passed
in, it might be unusable. For
example, remapped pages were mis-
aligned and due to the rounding
accesses might go to wrong
locations. If you get this return
code, you should possibly deallocate
the new context and inform the user
that the request could not be satis-
fied.

Still, THIS IS NOT AN ERROR. You
get a new context, but possibly an
usuable one.

RETURNS
NULL if the new context couldn’t be created or a handle to the
new context, as parameter to all MMU library functions.

mmu 11 / 77

NOTES
This call makes NOT the current task entering the new context,
you’ve to call

EnterMMUContext()
explicitly for that purpose.

The context structure is not documented intentionally. It depends
on the implementation.

BUGS

SEE ALSO

DeleteMMUContext()
BUGS

1.5 mmu.library/DeleteMMUContext

NAME
DeleteMMUContext - delete an MMU context build with CreateMMUContext.

SYNOPSIS
DeleteMMUContext (context);

a0

void DeleteMMUContext (struct MMUContext *);

FUNCTION
This function deletes a context build with

CreateMMUContext()
.

INPUTS
A handle to the context to be deleted.

RETURNS
nothing.

NOTES
This call doesn’t remove any task from the context, especially the
current task is NOT removed from the context. You’ve to call

LeaveMMUContext()
before.

Deleting a context with some tasks still in this context will
cause this function to guru.

If your context was created with a private supervisor context
included, you must call this function only *once*, with the
user context created. It will automatically deallocate the
attached supervisor context as well.

mmu 12 / 77

BUGS

SEE ALSO

CreateMMUContext()

1.6 mmu.library/EnterMMUContext

NAME
EnterMMUContext - let a task enter a specific context.

SYNOPSIS
context = EnterMMUContext(context , task);
d0 a0 a1

struct MMUContext * EnterMMUContext(struct MMUContext * ,
struct Task *);

FUNCTION
Add a given task to a context. This makes the MMU settings defined
by the context available for the task in question.

INPUTS
context - the context to enter or NULL for the global context.
task - a pointer to the task structure that should enter the

context.

RETURNS
a handle to the context the task participated before or NULL if
this function failed. The task will stay in the last context used
in this case.

NOTES
This call uses the tc_Switch() and tc_Launch() functions of the
task structure. What basically happens here is that these functions
are set to internal procedures that swap the context specific
MMU table or the global MMU in and flush the ATC of the MMU.

This call may fail, check the return code for NULL - either due to
lack of memory or because the task is part of a protected context
the current task hasn’t entered.

If you want to use the tc_Switch() and tc_Launch() functions your-
self, you should install a task specific context hook, see

AddContextHook()
.

This function can be used to change the context of a task by
adding it to a new context. The task specific context switch and
launch hooks will be "carried over" to the new context, but all
other MMU specific exceptions are now the matter of the new context.

mmu 13 / 77

BUGS

SEE ALSO

LeaveMMUContext()
, exec/tasks.h

1.7 mmu.library/LeaveMMUContext

NAME
LeaveMMUContext - remove a given task from a context.

SYNOPSIS
context = LeaveMMUContext(task);
d0 a1

struct MMUContext * LeaveMMUContext(struct Task *);

FUNCTION
The specified task leaves its context and enters the global context.

INPUTS
task - the task that should leave a private context and enter the

global default context.

RETURNS
the context the task was added to or NULL on failure.
Might be the global default context if the task did not enter any
context.

NOTES
It is safe to call this function even if the task wasn’t added to
any context. The function returns the global context in this case.

This function must be called to any task participating a given
context to be able to delete that context.

This function is equivalent to EnterMMUContext(NULL,task).

This function makes use of the tc_Switch() and tc_Launch() functions
of the task structure to be able to set the MMU root pointer.

Make sure that you check for failure. This call may return NULL if
the task entered a protected context the current task does not
participate or if switch and launch exceptions are in use.

BUGS

SEE ALSO

EnterMMUContext()
,
DeleteMMUContext()
,

mmu 14 / 77

RemContextHook()
, exec/tasks.h

1.8 mmu.library/CurrentContext

NAME
CurrentContext - find out the current context of a task.

SYNOPSIS
context = CurrentContext(task);
d0 a1

struct MMUContext * CurrentContext(struct Task *);

FUNCTION
This function is used to get a handle to the context the given
task is added to, or to return the context of the calling task.

INPUTS
task - the address of the task structure you like to investigate
or NULL to get a handle to the currently active context.

RETURNS
a handle to the context the given task is added to, the global
context if the task is not attached to any context or the
currently active context if the argument is NULL.

NOTES
This call fails only if the given task is part of a protected
context which is not shared by the current task. The NULL
argument is always safe.

BUGS

SEE ALSO
FindTask()

1.9 mmu.library/AddContextHook

NAME
AddContextHook - set an exception handler to a Context

SYNOPSIS
hook = AddContextHookA (tags);

a0

hook = AddContextHook (tag1, ...);

struct ExceptionHook * AddContextHookA (struct TagItem *);

mmu 15 / 77

struct ExceptionHook * AddContextHook (Tag tag1, ...);

FUNCTION
This call installs an exception hook for a given context for
various exception types the MMU library can provide.

INPUTS
tags - A taglist defining the type of the exception hook

to be added.

Currently defined are:

MADTAG_CONTEXT - The context to which this exception hook
should be added. This MUST be given for
"swapped" handlers. If it is left blank
or set to NULL for segmentation fault
handlers, you define a global segmentation
fault handler.

MADTAG_TASK - If the hook should be called only if a
specific task is running, specify a pointer
to the task structure here.
Warning! Adding too many task specific
hooks slows things down unnecessary.
Remember that a MMU Context may hold more
than one task.
This MUST be given for the switch and launch
hooks.

MADTAG_TYPE - Type of the exception hook to build. The
following types are available:

MMUEH_SEGFAULT - Called on segmentation fault, i.e. write to
a write protected page or access of an
invalid page. Most useful for "Enforcer"
like tools.

MMUEH_SWAPPED - Called on access for a "swapped out" page.
Most useful to implement virtual memory.

MMUEH_SWITCH - Called when the task looses the CPU.
MMUEH_LAUNCH - Called when the task gains the CPU.

Remember that the tc_Switch() and tc_Launch()
function pointers are no longer available
if the task has been added to a MMUContext.

MMUEH_PAGEACCESS - Called whenever a MAPP_SINGLE page gets
build by the context. This could be used to
modify the MMU tree "on the fly" if
necessary, the required parameters are passed
thru.

MADTAG_CODE - A function pointer to the code to be called.
This should be an assembly language function.
It is called like this:

mmu 16 / 77

Register a0 - Pointer to the ExceptionData structure or
the PageAccessData.

Register a1 - loaded with the MADTAG_DATA provided data.
Register a4 - Ditto.
Register a5 - Pointer to the code itself.
Register a6 - MMUBase. NOT A SCRATCH.

Registers d0-d1/a0-a1/a4-a5 are scratches and are available for the
Exception handler. You *MUST* set the "Z" condition code and
clear d0 on exit in case you handled the exception. Details on
how to write an exception handler are in the "Exception.doc" file.

MADTAG_DATA - Data to be loaded for the hook function.
MADTAG_NAME - A name for the hook. Currently unused.
MADTAG_PRI - A priority, ranging from -128...+127.

Hooks of higher priorities are called first.

RESULTS
A handle to the exception hook. Do not interpret this handle.
Or NULL on failure.

NOTES
this call will be used by the high-level function

AddMessageHook()
.

The global segmentation fault hook may be set by a debugging tool
like the enforcer.

The exception will not be activated, you need to call

ActivateException()
explicitly to make the library call it.

Much more needs to be said about this function, see Exception.doc
for details about the exception handlers.

BUGS

SEE ALSO

RemContextHook()
,
AddMessageHook()
,
ActivateException()
,

exec/interrupts.h, Exception.doc

1.10 mmu.library/RemContextHook

NAME
RemContextHook - remove an exception handler from a Context

SYNOPSIS

mmu 17 / 77

RemContextHook(hook)
a1

void RemContextHook(struct ExceptionHook *);

FUNCTION
This function removes a previously installed context hook
from the hook list.

INPUTS
The handle of the hook, as obtained by

AddContextHook()
.

RESULTS
none.

NOTES
You must call

DeactivateException()
on your hook before you

remove it.
Be aware that the library will call the exec exception handler,
i.e. will generate a guru in case no exception handler is
available.

SEE ALSO

AddContextHook()
,
DeactivateException()
, exec/interrupts.h

1.11 mmu.library/AddMessageHook

NAME
AddMessageHook - install a high-level hook function.

SYNOPSIS
hook = AddMessageHookA (tags);

a0

hook = AddMessageHook (tag1, ...);

struct ExceptionHook * AddMessageHookA (struct TagItem *);

struct ExceptionHook * AddMessageHook (Tag tag1, ...);

FUNCTION
Installs a high-level hook of the tag-given properties.
As soon as an exception of the requested type occurs, an exception
message (see below) will be sent to the port. The task that caused
the exception will be halted until the message gets replied.
BE WARNED: Message hooks perform only operation if task switching

mmu 18 / 77

is enabled and interrupts are allowed and the code failed in
User mode. They will just "drop thru" to the next handler if this
is not the case.

INPUTS
tags - A taglist defining the type of the exception hook

to be added.

Currently defined are:

MADTAG_CONTEXT - The context to which this exception hook
should be added. This MUST be given.

MADTAG_TASK - If the hook should be called only if a
specific task is running, specify a pointer
to the task structure here.
Warning! Adding too many task specific
hooks slows things down unnecessary.
Remember that a MMU Context may hold more
than one task.

MADTAG_TYPE - Type of the exception hook to build. The
following types are available:

MMUEH_SEGFAULT - Called on segmentation fault, i.e. write to
a write protected page or access of an
invalid page. Most useful for "Enforcer"
like tools.

MMUEH_SWAPPED - Called on access for a "swapped out" page.
Most useful to implement virtual memory.

MADTAG_CATCHERPORT - The port to sent the data to.
MADTAG_NAME - A name for the hook. Currently unused.
MADTAG_PRI - A priority, ranging from -128...+127.

Hooks of higher priorities are called first.

On an exception, the following message will be sent to the port:

struct ExceptionMessage {
struct Message exm_msg;
struct ExceptionData exm_Data;

};

For details about the ExceptionData structure, see Exception.doc.

Once the message gets replied, the faulted task is restarted.

RESULTS
a handle for the exception that must be passed back to

RemMessageHook()
for removal or NULL on failure.

Do not interpret this handle.

NOTES
The handler must have been added to a context with

mmu 19 / 77

EnterMMUContext()
before this function can be used. Unlike the

AddContextHook()
function, this DOES NOT work for "plain" tasks without a context ←↩

.

The hook must be activated with
ActivateException()
before it

gets called.

This function is used by the memory.library to install its
exception handler. The port will be in this case the port of
the swapper daemon that loads swapped out pages from disk.

BUGS

SEE ALSO

AddContextHook()
,
RemContextHook()
,
RemMessageHook()
,

ActivateException()
, Exception.doc

1.12 mmu.library/RemMessageHook

NAME
RemMessageHook - remove a high-level hook from a context.

SYNOPSIS
RemMessageHook(handle);

a1

void RemMessageHook(struct ExceptionHook *);

FUNCTION
This function removed a previously installed Message hook from
the hook list of the context.

INPUTS
handle - a handle to the message hook as returned by the

AddMessageHook function.

RESULTS
none.

NOTES
To remove a message hook safely, deactivate it first with

mmu 20 / 77

DeactivateException()
, then tell the daemon to reply all

exceptions of this hook, then remove it.

Not following these rules may cause deadlocks.

BUGS

SEE ALSO

AddMessageHook()
,
AddContextHook()
,
RemContextHook()
,

DeactivateException()
, Exception.doc

1.13 mmu.library/ActivateException

NAME
ActivateException - enable an exception hook.

SYNOPSIS
ActivateException(hook);

a1

void ActivateException(struct ExceptionHook *);

FUNCTION
Activates a formerly installed exception hook, either a low
level context hook or a high-level message hook.

RETURNS

NOTES
Hooks of either kind must be activated before the mmu.library
will call them. Hooks are deactivated after creation and must
be deactivated before they get removed.
This call can be safely used within interrupts and from super-
visor mode.

BUGS

SEE ALSO

DeactivateException()
,
AddContextHook()
,
AddMessageHook()

mmu 21 / 77

,
Exception.doc

1.14 mmu.library/DeactivateException

NAME
DeactivateException - enable an exception hook.

SYNOPSIS
DeactivateException(hook);

a1

void DeactivateException(struct ExceptionHook *);

FUNCTION
Deactivates a formerly installed exception hook, either a low
level context hook or a high-level message hook, i.e. disables
it from being called.

RETURNS

NOTES
Hooks of either kind must be activated before the mmu.library
will call them. Hooks are deactivated after creation and must
be deactivated before they get removed.
This call can be safely used within interrupts and from super-
visor mode.

BUGS

SEE ALSO

ActivateException()
,
RemContextHook()
,
RemMessageHook()
,

Exception.doc

1.15 mmu.library/GetPageSize

NAME
GetPageSize - return the page size of a context.

SYNOPSIS
pagesz = GetPageSize(context);
d0 a0

ULONG GetPageSize(struct MMUContext *);

mmu 22 / 77

FUNCTION
This function returns the page size selected by the MMU library for
the given context. Possible page sizes are limited by the hardware
and cannot be adjusted from the outside. The page size is set up
by the MMU library for the global public context, and it can be
selected from the available page sizes for private MMUContexts, see

CreateMMUContext()
.

INPUTS
context - a handle to the context to be investigated or NULL for

the active context.

RESULTS
the page size in bytes or zero for failure.

NOTES

BUGS

SEE ALSO

CreateMMUContext()

1.16 mmu.library/RemapSize

NAME
RemapSize - return the block size for memory remapping.

SYNOPSIS
remapsize = RemapSize(context);
d0 a0

ULONG RemapSize(struct MMUContext *);

FUNCTION
This function returns the smallest possible block size, and
therefore the alignment restrictions, for remapping of memory that
should be added to the exec memory pool. Since the MMU tables have
to be placed in non-fragmented memory, certain alignment
restrictions for the memory blocks the MMU tables are placed in
arise.
This harder aligment condition is only required for memory
that is put into the exec free list, but as long as remapped
memory is never returned from AllocMem, the page size is good
enough.

INPUTS
context - a handle to the context to be investigated or NULL for

the active context.

RESULTS

mmu 23 / 77

the smallest admissable block size for memory returned by
AllocMem().

NOTES
The call will fail if the given context is protected, the result
will be zero in this case.

Even though the mmu.library does support memory remapping, this
does not mean all other programs do. For example, remember that
the inputs to the "MAPP_REMAPPED" pages is a physical page size,
hence your program has to translate the logical address obtained
by AllocMem() to a physical address at first. This can be done
with the

PhysicalLocation()
function.

Additionally, DMA devices might or might not support memory
remapping, just for the same reason: They require physical, not
logical addresses. The MMU library provides a translation mechanism
in form of the ChachePreDMA() and CachePostDMA() functions of
ExecBase, but not all DMA device drivers call these functions
properly. Certain patches might be made available for devices
not following this rule.

BUGS
Adding remapped memory to the freelist is highly untested and
not recommended because of the quirks of this mechanism.

SEE ALSO

PhysicalLocation()
,
GetPageSize()
, exec/CachePreDMA(),

DMAInitiate()

1.17 mmu.library/SetProperties

NAME
SetProperties - set memory attributes for a given logical range.

SYNOPSIS

result = SetPropertiesA(context, flags, mask, lower, size, tags);
d0 a0 d1 d2 a1 d0 a2

BOOL SetPropertiesA(struct MMUContext *, ULONG, ULONG, ULONG, ULONG,
struct TagItem *);

result = SetProperties(context, flags, mask, lower, size, tag1, ...);

BOOL SetProperties(struct MMUContext *, ULONG, ULONG, ULONG, ULONG,

mmu 24 / 77

Tag tag1, ...);

FUNCTION
This call sets attributes of a certain memory range of the
software abstraction layer of the MMU tree, aligned to page
boundaries.

INPUTS
context - a handle to the context to modify or NULL for the active

context.

flags - a binary flags field for the attributes to define. The
following bits have been defined:

MAPP_WRITEPROTECTED - The page will be write
protected. Writes to this area will cause a segmentation
fault.

MAPP_ROM - Read only memory, writes tolerated.
This is almost identically to MAPP_WRITEPROTECTED except
that writes into this area will not cause a call of the
segmentation fault handler. The library will filter them
out.
This property can be used to simulate a ROM in RAM and
might be useful for kickstart remappers.

MAPP_USED - The "used" bit of the pages
will be set. The CPU will set this bit automatically
as soon as the pages are accessed.

This flag will turn on the "USED" bit in the hard-
ware MMU bit. NOT setting this flag means that the
USED bit in the hardware tree is preserved, regard-
less of the mask value.

MAPP_MODIFIED - The "modified" bit of the pages
will be set. The CPU will set this bit automatically
as soon as a write is performed to the page in question.
DO NOT SET THIS BIT TOGETHER WITH MAPP_WRITEPROTECTED
OR WITHOUT MAPP_USED or the CPU might hang.

This flag will turn on the "MODIFIED" bit in the hard-
ware MMU bit. NOT setting this flag means that the
MODIFIED bit in the hardware tree is preserved, regard-
less of the mask value.

MAPP_PRIVATE - The page will be marked invalid
for all but the given contexts.

MAPP_INVALID - The page will be marked as
invalid. Accessing it will invoke the bus error hook.
User data can be provided for this property mode,
provided you don’t select MAPP_SINGLEPAGE or
MAPP_REPAIRABLE as well.

MAPP_SWAPPED - The page will be marked as
swapped out.

mmu 25 / 77

A block ID *MUST* be provided for this property mode.

MAPP_CACHEINHIBIT - The page will be marked as non-
cacheable.

MAPP_IMPRECISEEXECPTION - The page will be marked as
"imprecise exception". MAPP_CACHEINHIBIT is mandatory
in this case or this flag does nothing.
Only available for the 68060, but does not harm for
other MMUs.

MAPP_NONSERIALIZED - The page will be marked as
serialized. MAPP_CACHEINHIBIT is mandatory if this
property is selected.
Only available for the 68040, but does not harm for
other MMUs.

MAPP_COPYBACK - The page will be marked as
"copyback" instead of "writethrough". Generally re-
commended since this is faster for the ’40 and ’60.
Only available for 68040 and 68060, but does not harm
if selected for other MMUs. MAPP_CACHINHIBIT MUST NOT
be selected.

MAPP_REMAPPED - Map the page to a different
memory location. Parameters are given in the tag items.

Even though this seems simple, remapping memory is
full of quirks. Obviously, DMA devices and the MMU
itself see the true physical addresses and not the
logical addresses as filtered by the MMU. Therefore,
adding remapped memory to the exec.library freelist
will cause nothing than trouble and hard to trace
disk faults and crashes as soon as this memory is
used by a DMA device or the mmu.library itself.
(Note that even though the library is supposed to
support this, this is currently untested)

Even though there *are* documented methods how to
prepare a DMA transfer for remapped memory, USING
these exec function calls is unfortunately the
exceptions. Therefore, this method is currently un-
supported, by most (!really!) DMA device drivers.
Amongst the broken devices are the gvpscsi.device
and the cybscsi.device, to give just two examples.

The omniscsi.device (the "Guru ROM") can be fixed
with the MuOmniScsiPatch.

If you really *MUST* remap public memory, then align
it *AT LEAST* to the border given by

RemapSize()
.

Just page alignment WILL NOT BE ENOUGH due to the way
how the library works internally.

YOU HAVE BEEN WARNED!

mmu 26 / 77

MAPP_SUPERVISORONLY - The page will be not available
for user programs.

NOTE: This mode is currently implemented using invalid
page descriptors for the user pages and is ignored
when building supervisor tables. This method saves some
space for the 68040 and 68060 and was the only way how
it could be done for the 68030 and 68851 without using
MMU tables twice as large.

MAPP_USERPAGE0 - Set user page attribute 0.
This selects the user page attribute 0 for the 68040
and 68060. "USER" DOES NOT MEAN YOU!
The status of this bit appears on special pins of the
CPU and might be required by some hardware, so don’t
play with this. You should not change this bit, by no
means.

MAPP_USERPAGE1 - Set user page attribute 1.
This selects the user page attribute 0 for the 68040
and 68060. See above for warnings.

MAPP_GLOBAL - The pages are part of the
global (public) memory.
You should not set this bit manually, it is under
control of the library to optimize table flushes.

MAPP_BLANK - Blank memory.
The pages are mapped to one special area in RAM so
erraneous reads and writes to these pages won’t harm.
MAPP_BLANK should ONLY be used to mark special memory
areas as "non-available" and un-handled by the hardware,
nothing else.

MAPP_SHARED - Properties are identically to
the public context.
This tells the library to use the same properties as
for the global context. However, MAPP_SHARED pages
are not automatically updated when the global context
changes, it’s just a convenient way of saying "I want
to uninstall my settings".

MAPP_TRANSLATED - Under control of the TTx registers.
NEVER SET THIS BIT YOURSELF.
Pages with the "MAPP_TRANSLATED" bit set are under
control of the "transparent translation registers" of
the MMU and are "out of scope" for the mmu.library.
Defining any properties for this domain will do nothing
(or little, dependent on the TTx register configuration).
A virtual memory program MUST NOT use virtual addresses
which are transparently translated, this won’t work.
The mmu.library tries to be smart about the TTx registers
and disables "unuseful" TTx settings itself.

MAPP_INDIRECT - Map to a user provided page
descriptor.
The provided pages(s) are mapped by a user provided

mmu 27 / 77

page descriptor. This page descriptor MUST BE aligned
to a long word address, and it MUST BE a valid page
descriptor for the MMU used.

NEVER EVER attempt DMA, such as harddisk reads or
writes to a memory domain marked as MAPP_INDIRECT.

Due to some cache peculatities, the data might be
incorrect and the result would be corrupt data.

The library will be able to mark pages as non-cacheable
if this is required for the DMA transfer, but this
magic does not work for indirect pages.

JUST DON’T DO THAT, MAPP_INIDIRECT is definitely an
advanced feature.

MAPP_BUNDLED - Map all pages in range to
a single page in RAM.

The main purpose of this function is to provide a
MAPP_BLANK property with a user-selectable target
page.

MAPP_SINGLEPAGE - Make this page available for

SetPageProperties()
.

WARNING! Setting this bit shortcuts some optimizations
the library might perform on the MMU table. The system
may easely run out of memory if you select this
property for "too many" pages. Use it with care, you
have been warned!

MAPP_REPAIRABLE - Inform the exception handler
to provide write data and to allow pipeline fill.

If this bit is set, the exception handler gets informed
that you want to know the write data in case writes
fail, or you want to provide the read data in case
reads fail. The read/write data is available in the
ExceptionData structure, read the exception handler
documentation.

This flag should be combined with MAPP_INVALID,
MAPP_WRITEPROTECTED, MAPP_SWAPPED or
MAPP_SUPERVISORONLY

However, this technique requires a lot of "trickery"
and should be expected to be slow and to create
sub-optimal and over-sized MMU tables. Use it with
care, on as few pages as possible and only if your
exception handler is "not on a hurry".

MAPP_USERATTRIBUTE0 - This is for your private use.
This bit does not have any specific function, it is

mmu 28 / 77

for your private use.

MAPP_USERATTRIBUTE1 - This is for your private use.
MAPP_USERATTRIBUTE2
MAPP_USERATTRIBUTE3

mask - A bit mask of the attributes to be changed.

Note that the hardware USED and MODIFIED bits will never
be cleared, even though the properties say so and the
corresponding bits in the mask are set. However, you can
force them "ON" if you like, this saves unnecessary write-
backs of the MMU.

lower - The lower boundary of the logical address to be
modified. This must be aligned to the page size or this call
will guru.

size - Size of the region to be modified. Must be a multiple
of the page size.

tags - A tag array with additional data. Currently defined:

MAPTAG_DESTINATION - the physical destination of the
logical address. Must be provided for the MAPP_MAPPED
or MAPP_BUNDLED bits.

MAPTAG_BLOCKID - a unique ID the MMU.library doesn’t
care about, for external usage of the memory.library.
Must be provided for the MAPP_SWAPPED flag and may be
used to indicate where on disk the swapped page is
kept.

MAPTAG_USERDATA - a unique cookie you might provide
for MAPP_INVALID pages and which is passed thru to the
segmentation fault exception handler.

MAPTAG_DESCRIPTOR - a pointer to a long word aligned
table descriptor for MAPP_INDIRECT.

RESULTS
A boolean success/failure indicator. Might fail if the context
is protected or no memory is available for the modification.

NOTES
This call adjusts only the abstraction layer of the MMU table
and marks the pages as "dirty". An explicit call to

RebuildTree()
is required to make the changes active.

You should bundle changes to the MMU table and call
RebuildTree()

once when you’re done because rebuilding the MMU tree is a costy
operation.
If you need to modify the MMU table "on the fly" then consider

mmu 29 / 77

using "SetPageProperties()", even though its use is restricted
to single pages. Even faster are MAPP_INDIRECT pages, but - to
say that again - DO NOT PERFORM DMA ON THESE PAGES.

The page size can be read with
GetPageSize()
.

SUPERVISORONLY, SWAPPED and INVALID memory are implemented
using the same MMU attributes (invalid, namely), but the
library exception handler will filter them out and call
the appropriate hook.

Write protection goes only for the context specified. It
usually makes sense to mark the memory region as PRIVATE as well,
unless you modify the public hook.
(Note that MAPP_PRIVATE is currently not implemented because it
will slow down things considerably.)

You may freely mark the first memory page as INVALID provided
the context MCXTAG_EXECBASE flag is set (it usually is).
Long word read accesses to AbsExecBase will be filtered out by
the exception handler of the library and will be satisfied trans-
parently to the program, as well as all other accesses except
those into the first 1024 bytes.

BUGS

If the mask contains any property that requires user data, i.e.
MAPP_REMAPPED or MAPP_SWAPPED, you *have* to redefine the user
data by tag items and MAY NOT leave them out, as the library
WILL NOT be able to restore the previously defined user data.

SEE ALSO

GetProperties()
,
AddContextHook()
,
GetPageSize()
,

RemapSize()
,
RebuildTree()
,
SetPageProperties()
,

SetMappingProperties()

1.18 mmu.library/SetPageProperties

mmu 30 / 77

NAME
SetPageProperties - set hardware memory attributes for a single
page.

SYNOPSIS

result = SetPagePropertiesA(context, flags, mask, lower, tags);
d0 a0 d1 d2 a1 a2

BOOL SetPagePropertiesA(struct MMUContext *, ULONG, ULONG, ULONG,
struct TagItem *);

result = SetPageProperties(context, flags, mask, lower, tag1, ...);

BOOL SetPageProperties(struct MMUContext *, ULONG, ULONG, ULONG,
Tag tag1, ...);

FUNCTION
This call sets the hardware attributes of a memory page.

INPUTS
context - a handle to the context to modify or NULL for the active

context.

flags - a binary flags field for the attributes to define. For
the available attributes, see the

SetProperties()
function.

Differences:

MAPP_MODIFIED and MAPP_USED are really set or cleared
in the true hardware table, the mask is considered
correctly.

Note that this function is the only method to clear
these two hardware flags,

SetProperties()
or

RebuildTree()
don’t do this.

mask - a bit mask of all bits to be changed.

tags - A tag array with additional data. Check

SetProperties()
for details.

RESULTS
A boolean success/failure indicator. Might fail if the context
is protected or no memory is available for the modification or
the page is not marked with MAPP_SINGLEPAGE.

NOTES

mmu 31 / 77

BE WARNED! This function is very restricted in its use. It may well
return FALSE even if all parameters are valid due to hardware
restrictions. This function does never ever rebuild an MMU tree,
it just modifies "what is there". If the library choose to optimize
the MMU library tree and to map a couple of pages by one descriptor,
for what reasons ever, this call will fail. The details when this
happens depends not only on the MMU, but on the general system
layout.

The ONLY documented way to get a mapping for a page that can be
adjusted using this call is to set the page to MAPP_SINGLEPAGE using

SetProperties()
before.

This call adjusts the hardware level of the MMU table if a descriptor
is available for a single page. It does not modify more than one
page at once.

It might happen that the library does not satisfy a request
setting a page as "cacheable" if a DMA operation is currently in
progress and the page must remain "nonacheable". However, the
function will not fail in this case, but just delay the operation
until the DMA is complete. The properties will always fall back to
the next available option.

This routine is safe to be called from within interrupts, it does
not break any Forbid() or Disable() and is ideal for
quick-and-dirty repair operations within exceptions handlers,
provided the MAPP_SINGLEPAGE flag has been set.

BUGS
Note that MAPP_SINGLEPAGE is the flag you want here, not
MAPP_REPAIRABLE. That’s something different!

If the mask contains any property that requires user data, i.e.
MAPP_REMAPPED or MAPP_SWAPPED, you *have* to redefine the user
data by tag items and MAY NOT leave them out, as the library
WILL NOT be able to restore the previously defined user data.

SEE ALSO

GetPageProperties()
,
AddContextHook()
,

GetPageSize()
,
RebuildTree()
,
SetProperties()
,

SetMappingProperties()

mmu 32 / 77

1.19 mmu.library/RebuildTree

NAME
RebuildTree - build a MMU hardware tree from the software abstraction
layer.

SYNOPSIS
result = RebuildTree(context);
d0 a0

BOOL RebuildTree (struct MMUContext *);

FUNCTION
This function adjusts the MMU hardware tree to reflect the settings
of the software abstraction layer defined with

SetProperties()
.

INPUTS
context - a handle to the context to investigate or NULL for the
active context.

RESULTS
a boolean success/failure indicator. TRUE if the operation was
performed successfully.

NOTES
This is the big - and admittedly - slow one.

Rebuilding the MMU tree is a relatively slow operation. The library
tries to be smart about it and rebuilds only the pages whose
mappings have been adjusted, but it’s still a heavy beast.

Properties temporarely defined with
SetPageProperties()
will be

lost after the rebuild, except for the MAPP_USED and MAPP_MODIFIED
bits.

In case of failure, the hardware layer will remain valid and un-
changed, but the context remains marked as "dirty".

BE WARNED! A consistent use of the two flags is only possible
if the pages are marked as MAPP_SINGLE. The page building algorithm
does not guarantee consistent use of these two bits except for
MAPP_SINGLE pages. Even though it *might* look well most the time,
it is not documented that these two bits are kept correctly for non-
SINGLE pages. If you need MODIFIED or USED page information, the only
way to get them is to mark these pages as MAPP_SINGLE. There’s no
consistent use for these flags if early termination descriptors
(hence, w/o MAPP_SINGLE) are used by the library.

Even though some pages in the abstraction layer might be marked as
un-USED or un-MODIFIED, this routine NEVER clears the hardware bits.
It requires a call to

SetPageProperties()

mmu 33 / 77

, and hence the MAPP_SINGLE
attribute (once again!) to do this.

BUGS
Much more should be said about this function.

SEE ALSO

SetProperties()
,
SetPageProperties()
,
GetProperties()
,

GetPageProperties()
,
RebuildTrees()

1.20 mmu.library/RebuildTrees

NAME
RebuildTree - build a MMU hardware tree from the software abstraction
layer for several contexts at once. (V41)

SYNOPSIS
result = RebuildTreesA(contextptrptr);
d0 a0

result = RebuildTrees(context, context, ...);

BOOL RebuildTreesA (struct MMUContext **);

BOOL RebuildTrees (struct MMUContext, ...);

FUNCTION
This function adjusts the MMU hardware tree to reflect the settings
of the software abstraction layer defined with

SetProperties()
.

INPUTS
contextptr - a pointer to a NULL terminated array of context
handles.

RESULTS
a boolean success/failure indicator. TRUE if the operation was
performed successfully and all context could have been rebuild.

NOTES
This is the big - and admittedly - slow one.

Rebuilding the MMU tree is a relatively slow operation. The library

mmu 34 / 77

tries to be smart about it and rebuilds only the pages whose
mappings have been adjusted, but it’s still a heavy beast.

Properties temporarely defined with
SetPageProperties()
will be

lost after the rebuild, except for the MAPP_USED and MAPP_MODIFIED
bits.

The advantage of this function is that it guarantees that all
involved contexts remain unmodified and dirty in case one of the
contexts cannot be rebuild. On success, it is guaranteed that all
contexts will have been rebuild successfully.

A special word has to be said about context locking here: This
function will first call

LockContextList()
, and will then lock the

individiual contexts in the order passed in. Hence, you’ve either
to lock all contexts as well, and hence have to call

LockContextList()
yourself as first step, or you must not lock any

context of the contexts on the list. Everything else is dangerous
and implies the risk of a deadlock.

BE WARNED! A consistent use of the two flags is only possible
if the pages are marked as MAPP_SINGLE. The page building algorithm
does not guarantee consistent use of these two bits except for
MAPP_SINGLE pages. Even though it *might* look well most the time,
it is not documented that these two bits are kept correctly for non-
SINGLE pages. If you need MODIFIED or USED page information, the only
way to get them is to mark these pages as MAPP_SINGLE. There’s no
consistent use for these flags if early termination descriptors
(hence, w/o MAPP_SINGLE) are used by the library.

Even though some pages in the abstraction layer might be marked as
un-USED or un-MODIFIED, this routine NEVER clears the hardware bits.
It requires a call to

SetPageProperties()
, and hence the MAPP_SINGLE

attribute (once again!) to do this.

BUGS
Much more should be said about this function.

SEE ALSO

SetProperties()
,
SetPageProperties()
,
GetProperties()
,

GetPageProperties()
,

mmu 35 / 77

RebuildTree()

1.21 mmu.library/GetProperties

NAME
GetProperties - read memory attributes for a given logical page
from the MMU table abstraction layer.

SYNOPSIS

flags = GetPropertiesA(context, lower, tags);
d0 a0 a1 a2

ULONG GetPropertiesA(struct MMUContext *, void *, struct TagItem *);

flags = GetProperties(context, lower, tag1, ...);

ULONG GetProperties(struct MMUContext *, void *, Tag tag1, ...);

FUNCTION
This call reads the page properties of a certain address in
memory from the software abstraction layer. It is the counterpart
of

SetProperties()
.

INPUTS
context - a handle to the context to investigate or NULL for the

active context.

lower - the logical address of the page to investigate. The
size of the page depends on the hardware and is selected by
the MMU library. The number of bytes in a page is returned
by

GetPageSize()
.

tags - additional tags. Currently defined are:

MAPTAG_DESTINATION - a pointer to a void * where
the physical destination of the logical address is
filled in. Only available if the page is physically
mapped to somewhere. Not filled in otherwise.

MAPTAG_BLOCKID - read the a unique ID for the
MAPP_SWAPPED property. Untouched if the page isn’t
swapped. The tag data points to a long word which will
be filled in for swapped out pages.

MAPTAG_USERDATA - read the unique cookie for
INVALID pages, fill in the long word pointed to by
the tag data field.

mmu 36 / 77

MAPTAG_DESCRIPTOR - fill in the location of the
indirect descriptor which is used to perform the
mapping. Only used if MAPP_INDIRECT is used.

RESULTS
Returns a binary flags field for the attributes to define. See

SetProperties()
for details. Remember that MAPP_USED or

MAPP_MODIFIED reflect the bits on the abstraction layer, not the
true hardware bits. You MUST call

GetPageProperties()
to read

them, and hence *MUST* use MAPP_SINGLE pages.

NOTES
The page size can be read with

GetPageSize()
. Check the return

code of this call!

The flags returned are valid for the given context, a different
context may return a different flag setting and even a different
physical locations.

WARNING: The flags returned DO NOT reflect the hardware flags
in the MMU table for the context. They DO reflect the settings
installed with

SetProperties()
on the abstraction layer of the

MMU tables.

The hardware table might differ for the following reasons:

-
SetProperties()
was called, but the changes haven’t been

made active with
RebuildTree()
yet.

- A program modified the hardware layer directly using

SetPageProperties()
.

- DMA is currently active and the page in question has
therefore been marked as non-cacheable temporarely.

Additionally, the library might have adjusted the abstraction
layer itself by allocating non-cacheabe memory for its
MMU tables.

This routine is *NOT* safe to be called from within interrupts.

BUGS

SEE ALSO

mmu 37 / 77

SetProperties()
,
AddContextHook()
,
GetMappingProperties()
,

GetPageSize()
,
GetPageProperties()
,
RebuildTree()

1.22 mmu.library/GetPageProperties

NAME
GetPropertiesA - read memory attributes from the hardware level
for a given logical page.

SYNOPSIS

flags = GetPagePropertiesA(context, lower, tags);
d0 a0 a1 a2

ULONG GetPagePropertiesA(struct MMUContext *, void *,

struct TagItem *);

result = GetPageProperties(context, lower, tag1, ...);

BOOL GetPageProperties(struct MMUContext *, void *, Tag tag1, ...);

FUNCTION
This call reads the page properties of a certain address in
memory directly from the hardware. It is the counterpart
of

SetPageProperties()
.

INPUTS
context - a handle to the context to investigate or NULL for the

active context. The library might use the MMU hardware directly
if NULL is passed in, this call might be faster therefore.

lower - the logical address of the page to investigate. The
size of the page depends on the hardware and is selected by
the MMU library. The number of bytes in a page is returned
by

GetPageSize()
.

tags - additional tags. See
GetProperties()

mmu 38 / 77

for details.

RESULTS
Returns a binary flags field for the attributes to define. See

SetProperties()
for details.

NOTES
The page size can be read with

GetPageSize()
.

The flags returned are valid for the given context, a different
context may return a different flag setting and even a different
physical location.

WARNING: The flags returned reflect the NOT the hardware flags
in the MMU table for the context except for the MODIFIED and USED
properties, even though the hardware level is *almost* consistent
with these flags.

The hardware table might differ slightly in the following
situations:

- DMA is currently active and the page in question has
therefore been marked as non-cacheable temporarely.
Therefore, the cache settings returned are what will be
re-installed here when DMA is finished. The library
will "fake" the flags you have installed for the page
investigated.

- The library will use invalid descriptors to implement
supervisor only or swapped pages.

However, even though the flags might differ from the hardware
flags, you’re always safe to re-install the properties with
SetPageProperties, there’s no need to keep track of pecularities
like cache disabling for DMA pages. The library does this for you.

MAPP_MODIFIED and MAPP_USED are always read from the hardware
directly.

KEEP IN MIND that these two bits are only set and handled
consistently for MAPP_SINGLE pages. You MUST NOT interpret
them in all other cases, their values might get lost on a

RebuildTree()
call.

This routine is safe to be called from within interrupts, most
useful within exception handlers.

BUGS

SEE ALSO

mmu 39 / 77

GetProperties()
,
AddContextHook()
,

GetPageSize()
,
SetPageProperties()
,
RebuildTree()

1.23 mmu.library/AllocAligned

NAME
AllocAligned - allocate memory aligned to a memory border.

SYNOPSIS
mem = AllocAligned(bytesize, reqments, align);
d0 d0 d1 a0

void * AllocAligned(ULONG, ULONG, ULONG);

FUNCTION
Allocate memory aligned to certain boundaries.

INPUTS
bytesize - the size of the memory to allocate.

reqments - exec style memory attributes

align - the alignment restrictions of the page.
MUST be a power of two.

RETURNS
a pointer to the allocated memory, aligned to the given border or
NULL if no free physical memory could be found.

NOTES
Examples of how to use the "align" parameter:

mem = AllocAligned(123,MEMF_PUBLIC|MEMF_CLEAR,1024);

will allocate 123 bytes starting at a 1024 byte border, i.e.
the address returned will be divisible by 1024. The call will
clear the 123 bytes, NOT MORE.

This is a service routine for the memory.library and shouldn’t be
used for all-day purposes.

A DOS process will have its pr_Result2 field set to
ERROR_NO_FREE_STORE if the memory allocation fails.

The mmu.library calls this function by using its LVO library entry,
so it can be patched to a smarter implementation if desired.

mmu 40 / 77

BUGS

SEE ALSO

GetPageSize()
, exec/memory.h

1.24 mmu.library/LockMMUContext

NAME
LockMMUContext - lock a MMU context

SYNOPSIS
LockMMUContext(context);

a0

void LockMMUContext(struct MMUContext *);

FUNCTION
Lock the software abstraction layer of the MMU table against
modifications from other tasks.

INPUTS
A handle to a MMUContext or NULL for the active context.

RETURNS

NOTES
This mechanism DOES NOT avoid changes of the MMU table on a lower
level by

SetPageProperties()
, only
SetProperties()
from other

tasks will be locked.
Hence, it locks the abstraction layer, but not the hardware
level.

DO NOT lock more than one context at once, unless you locked
also the context list with

LockContextList()
. Not following

this rule might cause deadlocks.

BUGS

SEE ALSO

UnlockMMUContext()
,
SetPageProperties()
,
SetProperties()

mmu 41 / 77

,

LockContextList()
.

1.25 mmu.library/UnlockMMUContext

NAME
UnlockMMUContext - release a MMU context

SYNOPSIS
UnlockMMUContext(context);

a0

void UnlockMMUContext(struct MMUContext *);

FUNCTION
Release the software abstraction layer of the MMU table, allow
modifications from other tasks.

INPUTS
A handle to a MMUContext or NULL for the active context.

RETURNS

NOTES
This mechanism DOES NOT avoid changes of the MMU table on a lower
level by

SetPageProperties()
, only
SetProperties()
from other

tasks will be locked.
Hence, it locks the abstraction layer, but not the hardware
level.

BUGS

SEE ALSO

LockMMUContext()
,
SetPageProperties()
,
SetProperties()
,

AttemptLockMMUContext()

1.26 mmu.library/AttemptLockMMUContext

mmu 42 / 77

NAME
AttemptLockMMUContext - attempt to lock a MMU context

SYNOPSIS
ok = AttemptLockMMUContext(context);

a0

struct MMUContext * AttemptLockMMUContext(struct MMUContext *);

FUNCTION
Grants non-blocking access to a MMU context.
Attempts to lock the software abstraction layer of the MMU
table against modifications from other tasks.

INPUTS
A handle to a MMUContext or NULL for the active context.

RETURNS
TRUE in case of success - the context is then locked for you
and this lock must be released with

UnlockMMUContext()
.

FALSE in case any other task holds a lock.

NOTES
This mechanism DOES NOT avoid changes of the MMU table on a lower
level by

SetPageProperties()
, only
SetProperties()
from other

tasks will be locked.
Hence, it locks the abstraction layer, but not the hardware
level.

DO NOT lock more than one context at once, unless you locked
also the context list with

LockContextList()
. Not following

this rule might cause deadlocks.

BUGS
In pre-V39 machines, this call does not lock the context again
in case you already hold a lock. This is a bug of the pre-V39
AttemptSemaphore(), read the exec autodocs for a workaround.

SEE ALSO

UnlockMMUContext()
,
SetPageProperties()
,
SetProperties()
,

LockContextList()

mmu 43 / 77

, AttemptSemaphore()

1.27 mmu.library/LockContextList

NAME
LockContextList - arbitrate a master lock.

SYNOPSIS
LockContextList();

void LockContextList(void);

FUNCTION
Arbitrates a master lock that allows locking more than one context
at once to avoid deadlocks.

INPUTS

RETURNS

NOTES
This lock grants access for locking more than one context at once,
to avoid deadlocks. I.e. in case you need to lock more than one
context at a time, get this lock FIRST, then lock the contexts
in any order you prefer.

This call DOES NOT avoid modification of the context list or
individual contexts at all, i.e. other tasks are still able
to create and to dispose contexts. To avoid this, you must lock
the contexts afterwards.

When you’re done with the contexts, unlock the contexts first,
THEN release this lock with

UnlockContextList()
. NOTE THE ORDER!

BUGS

SEE ALSO

UnlockContextList()
,
LockMMUContext()
,
AttemptLockContextList()

1.28 mmu.library/UnlockContextList

NAME
UnlockContextList - release the master context lock

mmu 44 / 77

SYNOPSIS
UnlockContextList();

void UnlockContextList(void);

FUNCTION
Releases the master lock that allows locking more than one context
at once to avoid deadlocks.

INPUTS

RETURNS

NOTES
This lock grants access for locking more than one context at once,
to avoid deadlocks. I.e. in case you need to lock more than one
context at a time, get this lock FIRST, then lock the contexts
in any order you prefer.

This call DOES NOT avoid modification of the context list or
individual contexts at all, i.e. other tasks are still able
to create and to dispose contexts. To avoid this, you must lock
the contexts afterwards.

When you’re done with the contexts, unlock the contexts first,
THEN release this lock with UnlockContextList(). NOTE THE ORDER!

BUGS

SEE ALSO

LockContextList()
,
LockMMUContext()
,
AttemptLockContextList()

1.29 mmu.library/AttemptLockContextList

NAME
AttemptLockContextList - attempt to arbitrate the master lock.

SYNOPSIS
ok = AttemptLockContextList();

LONG AttemptLockContextList(void);

FUNCTION
Attempts granting the context master lock in a non-blocking
fashion.

INPUTS

mmu 45 / 77

RETURNS
TRUE in case the master lock could be arbitrated. You have then to
release it with

UnlockContextList()
.

FALSE in case it is already locked and access could not be granted.

NOTES
This lock grants access for locking more than one context at once,
to avoid deadlocks. I.e. in case you need to lock more than one
context at a time, get this lock FIRST, then lock the contexts
in any order you prefer.

This call DOES NOT avoid modification of the context list or
individual contexts at all, i.e. other tasks are still able
to create and to dispose contexts. To avoid this, you must lock
the contexts afterwards.

When you’re done with the contexts, unlock the contexts first,
THEN release this lock with

UnlockContextList()
. NOTE THE ORDER!

BUGS
In pre-V39 machines, this call does not lock the context again
in case you already hold a lock. This is a bug of the pre-V39
AttemptSemaphore(), read the exec autodocs for a workaround.

SEE ALSO

UnlockContextList()
,
LockMMUContext()
,
LockContextList()
,

AttemptLockSemaphore()

1.30 mmu.library/AllocLineVec

NAME
AllocLineVec - allocate cache line aligned, keep size

SYNOPSIS
AllocLineVec (bytesize , attributes);

d0 d1

void * AllocLineVec (ULONG, ULONG);

FUNCTION
Allocates memory like AllocVec(), but the memory is guaranteed
to be aligned to cache lines of the processors in the system,
even though the pointer returned IS NOT.
Minimal guaranteed alignment is currently 32 bytes, i.e. a

mmu 46 / 77

PPC cache line. Future hardware may require stricter alignments.

AllocLineVec’d memory is released with FreeVec() from the
exec.library.

INPUTS
bytesize - the size of the memory block in bytes.
attributes - memory attributes, see exec.library/AllocMem.

RETURNS
a pointer to the memory allocated or NULL on failure.

A DOS process will have its pr_Result2 field set to
ERROR_NO_FREE_STORE if the memory allocation fails.

NOTES
BIG WARNING: The pointer returned IS NEVER cache line aligned
itself, but the complete memory block toghether with the
vector size is kept in a cache line, regardless of the size
passed in. Due to alignment restrictions, the routine might
allocate a larger memory block than requested. It is however
guaranteed that AT LEAST the size requested is returned, and
that a FreeVec() will, indeed, free all memory.

If MEMF_CLEAR is requested, the memory is cleared on the
MC68K side, but the "zeros written" might be still in the
cache. Hence, it is a good idea to flush the cache if the
memory is passed over to the PPC.

However, the vector size itself is always "pushed" to
memory, it is therefore guaranteed to be properly written
back to the memory.

The memory allocated this way is released by FreeVec() of
the exec.library.

BUGS

SEE ALSO
exec.library/AllocVec(), exec.library/FreeVec(), AllocLineVec()

1.31 mmu.library/PhysicalPageLocation

NAME
PhysicalPageLocation - translate logical address to physical

SYNOPSIS
addr = PhysicalPageLocation(context , addr);
d0 a0 a1

void * PhysicalPageLocation(struct MMUContext * , void *);

FUNCTION
This function finds the physical address for the logical address
passed in by scanning the MMU hardware table.

mmu 47 / 77

If the physical address is not available, NULL is returned.

INPUTS
context - the context to enter or NULL for the current context.
addr - the logical address to be translated.

RETURNS
the physical address of the logical address passed in, or NULL
in case the logical address is not swapped in or otherwise out of
control of the library.

NOTES
This is the low-level function, consider using the high-level
function

PhysicalLocation()
when possible.

This call can be safely used within interrupts.

BUGS
The function will also return NULL in case the logical address
is translated to the address 0L. However, 0L should never be
used as physical address anyhow.

SEE ALSO

GetPageProperties()
,
PhysicalLocation()

1.32 mmu.library/PhysicalLocation

NAME
PhysicalLocation - translate logical address to physical

SYNOPSIS
props = PhysicalLocation(context, addrptr, lenptr);
d0 d1 a0 a1

ULONG PhysicalLocation(struct MMUContext * , void ** , ULONG *);

FUNCTION
This function finds the physical address for the logical address
passed in by scanning the software abstraction layer.
If the physical address is not available, NULL is returned.

INPUTS
context - the context to enter or NULL for the current context.
addrptr - points to the logical address to be translated.

The physical address is filled in here, or NULL in case
the logical address passed in is not available.

lenptr - Points to the length of the address range to be trans-
lated. The function returns the length of the largest
possible continous memory range contained in the memory
range passed in. Hence, this function may shorten the
memory block for fragmentized memory models. It will

mmu 48 / 77

NULL in case the memory is not available.

RETURNS
the properties of the memory range.

NOTES
This is the high-level function, it is not callable from within
interrupts.

In case you’ve to operate on a range of physical memory, start
the translation with this call, then compare the size returned
with the size of the memory block passed in. Because this
function may shorten the memory size in case the physical
memory is fragmentated, you should be prepared that the size
returned is smaller than what was passed in. In this case, operate
on the memory region returned, then add the returned size to
the original logical address and call this function again to
get the physical location of the next chunk.

BUGS
The function will also return NULL in case the logical address
is translated to the address 0L. However, 0L should never be
used as physical address anyhow.

SEE ALSO

GetProperties()
,
PhysicalPageLocation()

1.33 mmu.library/DMAInitiate

NAME
DMAInitiate - start a DMA transport given a logical address.

SYNOPSIS
fine = DMAInitiate(context, addrptr, lenptr, write);

d1 a0 a1 d0

BOOL DMAInitiate(struct MMUContext * , void ** , ULONG * , BOOL);

FUNCTION
This function finds the physical address for the logical address
passed in by scanning a backup of the MMU translation tree.
It ignores modifications made by the high-level and low-level
functions unless

RebuildTree()
is called.

INPUTS
context - the context to enter or NULL for the current context.

NOTE: This parameter is currently a dummy and should be
set to NULL. The mmu.library will always use the public
context for translation.

addrptr - points to the logical address to be translated.

mmu 49 / 77

The physical address is filled in here.
lenptr - Points to the length of the address range to be trans-

lated. The function returns the length of the largest
possible continous memory range contained in the memory
range passed in. Hence, this function may shorten the
memory block for fragmentized memory models.

write - set this to TRUE for transports from a DMA device INTO
the memory, i.e. device reads. Set this to FALSE for
writes from memory to the device.

RETURNS
fine - TRUE if the address and length passed in pointed to available

memory. FALSE if the requested DMA transfer was invalid.

The result code is new for V42, do not check it for V41 or below.

NOTES
The function checks whether the memory range passed in is available
for DMA. It will guru in case it is not, i.e. the page is either
swapped out, invalid, indirect, or write protected for
DMA device reads. Reads into ROM addresses are silently tolerated,
and, hence, are translations to and from blank dummy pages.

This function is callable from within interrupts, but does only
use a backup of the high-level table for its translation.
Changes to the software abstraction level are not visible for
this function unless

RebuildTree()
is called. Changes to the

hardware level are not at all visible to this (and all other
high-level) functions.

In case you’ve to operate on a range of physical memory, start
the translation with this call, then compare the size returned
with the size of the memory block passed in. Because this
function may shorten the memory size in case the physical
memory is fragmentated, you should be prepared that the size
returned is smaller than what was passed in. With the physical
address returned, start the DMA and call

DMATerminate()
when

done.
In case the returned size is smaller than the block passed in,
add the returned size to the original logical address and
call this function again to get the physical location of the
next chunk.

EACH CALL TO DMAInitiate() must be matched by ONE AND PRECISELY
ONE call to

DMATerminate()
.

Even though this function does not require locking the context,
I highly recommend doing so. It won’t crash if you don’t, but
someone else could modify the MMU translation table in between.
The library can deal with that, but the result of the DMA
operation might be different than what you expect.

mmu 50 / 77

The pre-V42 releases did not return a result code but generated
an alert in case illegal memory has been passed in. This changed
for V42. DO NOT assume a meaningful result code for V41 or
below.

BUGS
This function should really use the context passed in, but
since most (if not all) DMA device drivers do not keep the
context of the task that actually initiated the transfer and
hence would use the wrong context anyhow, DMA is currently limited
to the public context.

SEE ALSO

DMATerminate()
,
PhysicalPageLocation()
, exec/CachePreDMA()

1.34 mmu.library/DMATerminate

NAME
DMATerminate - end a DMA transfer initiated by DMAInitiate.

SYNOPSIS
DMATerminate(context);

d1

void DMATerminate(struct MMUContext *);

FUNCTION
This function ends a DMA transfer initiated by DMAInitate. It
releases the resources by the first call.

INPUTS
context - the context to enter or NULL for the current context.

NOTE: This parameter is currently a dummy and should be
set to NULL. The mmu.library will always use the public
context for translation.

RETURNS

NOTES
This function is callable from within interrupts, but does only
use a backup of the high-level table for its translation.
Changes to the software abstraction level are not visible for
this function unless

RebuildTree()
is called. Changes to the

hardware level are not at all visible to this (and all other
high-level) functions.

EACH CALL TO
DMAInitiate()

mmu 51 / 77

must be matched by ONE AND PRECISELY
ONE call to DMATerminate().

For details, check the
DMAInitiate()
function.

BUGS
This function should really use the context passed in, but
since most (if not all) DMA device drivers do not keep the
context of the task that actually initiated the transfer and
hence would use the wrong context anyhow, DMA is currently limited
to the public context.

SEE ALSO

DMAInitiate()
,
PhysicalPageLocation()
, exec/CachePostDMA()

1.35 mmu.library/GetMapping

NAME
GetMapping - get access to the memory map of a MMUContext

SYNOPSIS
list = GetMapping(context);
d0 a0

struct MinList * GetMapping(struct MMUContext *);

FUNCTION
This function makes a copy of the MapNodes for the given context.
The nodes in this list describe the memory map as seen from tasks
attached to this context, sorted by logical addresses.
The list must be released afterwards with

ReleaseMapping()
.

INPUTS
context - the context to enter or NULL for the current context.

RETURNS
a pointer to a struct MinList which contains the MapNodes for this
context, sorted by physical address, or NULL in case of failure.

NOTES
The nodes are just a copy of the real nodes within the context.

This function is most useful to make a backup of the context
memory map before altering it. In case any of the modifications
fail, you are able to undo all modifications completely with
a call to

SetPropertyList()

mmu 52 / 77

- which can’t fail.

To give an example:

/* make a backup of the context how it looks now */

LockMMUContext(ctx);

if (list=GetMapping(ctx)) {
fine=TRUE;

/* Try to alter it, step by step. */

if (!SetProperties(...))
fine=FALSE;

if (!SetProperties(...))
fine=FALSE;

/* etc, etc.... */

/* Oops, we failed! Re-install the old setup. */
if (!fine)

SetPropertyList(ctx,list);
}

ReleaseMapping(ctx,list);
UnlockMMUContext(ctx);
/* and so on... */

Note that you’ve still to call ReleaseContextList(), even in
case of failure when you’ve already re-installed backup property
list.

BUGS

SEE ALSO

ReleaseMapping()
,
SetPropertyList()
, mmu/context.h

1.36 mmu.library/ReleaseMapping

NAME
ReleaseMapping - get access to the memory map

SYNOPSIS
ReleaseMapping(context , list);

a0 a1

void ReleaseMapping(struct MMUContext * , struct MinList *);

FUNCTION

mmu 53 / 77

This function releases the list of MapNodes arbitrated by
GetMapping.

INPUTS
context - the context the nodes where taken from.
list - the backup property list to release.

RETURNS

NOTES
This function *MUST* be called, even in case the property list
was re-installed with

SetPropertyList()
.

BUGS

SEE ALSO

NewMapping()
,
GetMapping()
,
SetPropertyList()

1.37 mmu.library/NewMapping

NAME
NewMapping - build a new memory map

SYNOPSIS
list = NewMapping ();
d0

struct MinList * NewMapping (void);

FUNCTION
Build and initialize a new memory map list. All addresses in this
list will be marked as MAPP_BLANK.

INPUTS
nothing.

RESULTS
a MinList structure, initialized with MapNodes representing a
completely blank memory layout or NULL on failure. You either need
to copy the layout from a context with

CopyContextRegion()
, or

define your own layout with calls to
SetMappingProperties()
.

NOTES

mmu 54 / 77

Don’t forget to release the list (and its contents) with

ReleaseMapping()
when you’re done.

BUGS

SEE ALSO

CopyContextRegion()
,
SetMappingProperties()
,
ReleaseMapping()
,

GetMapping()

1.38 mmu.library/CopyMapping

NAME
CopyMapping - transfer memory properties between lists

SYNOPSIS
fine = CopyMapping (from , to , base , length , mask);
d0 a0 a1 d0 d1 d2

BOOL CopyMapping (struct MinList * , struct MinList * ,

ULONG , ULONG , ULONG);

FUNCTION
Copy the memory properties from one memory map to another, thru
a mask.

INPUTS
from - the memory map which is (partially) to be transfered.
to - the destination of the copy operation.
base - base address. Memory properties will be copied starting

at this address.
length - length of the memory region in bytes whose properties

shall be transfered.
mask - a mask of property bits which are to be transfered. A

zero bit in this mask indicates that the corresponding
property in the destination will not be touched. For
all the properties, check the

SetProperties()
function.

RESULTS
a boolean success/failure indicator. It is TRUE in case the
operation was performed, FALSE otherwise. The destination will
not have been touched at all in this case.

mmu 55 / 77

NOTES
this call does not copy memory. It just copies memory attributes
from one memory map to another.

Check
CopyContextRegion()
to copy the properties from a context

instead from a list.

Since this call is not context based, the library will not be able
to perform checks for correct page alignment, you have to do that
yourself. Especially, note that

SetPropertyList()
- which attaches

a memory map to a context - does not perform any check on this
list either. Hence, *NOT* checking for page alignment here might
result in an invalid context if you try to attach an incorrectly
aligned list to a context later on.

BUGS

SEE ALSO

SetPropertyList()
,
ReleaseMapping()
,
DupMapping()
,
SetProperties()
,

CopyContextRegion()

1.39 mmu.library/DupMapping

NAME
DupMapping - make a one-to-one copy of a memory map

SYNOPSIS
dup = DupMapping (list);
d0 a0

struct MinList * DupMapping(struct MinList *);

FUNCTION
this call builds an identical copy of the memory map passed in.

INPUTS
list - the memory map to be copied.

RESULTS
another memory list, identical to the list passed in, or NULL on

mmu 56 / 77

failure.

NOTES
Don’t forget to release the memory list with

ReleaseMapping()
if you’re done with it. You need to release both, the original ←↩

as
well as the duplicate.
In case you want to make a copy of the memory map of a context,
use

GetMapping()
instead.

BUGS

SEE ALSO

GetMapping()
,
ReleaseMapping()

1.40 mmu.library/CopyContextRegion

NAME
CopyContextRegion - transfer properties from a context to a list

SYNOPSIS
fine = CopyContextRegion (ctx, list, base, length, mask);
d0 a0 a1 d0 d1 d2

BOOL CopyContextRegion (struct MMUContext *, struct MinList *,

ULONG, ULONG, ULONG);

FUNCTION
Copy the properties of a memory region defined by a context to
another memory map, thru a mask.

INPUTS
ctx - source context whose memory map shall be transfered.
list - the destination memory map which is to be altered.
base - base address of the memory region whose properties are

to be copied.
length - length of the memory region in bytes whose properties

will be transfered.
mask - a mask of property bits, see the

SetProperties()
function for a detailed explanation. A zero bit in this

mask means that the corresponding property in the
destination will be left alone and will remain unchanged.

RESULTS
a boolean success/failure indicator, TRUE for success. On failure,
the destination memory map will not have been touched at all.

mmu 57 / 77

NOTES
This call does not copy memory at all, it just defines the memory
properties of a given memory map from that of a given context.

Check
CopyMapping()
to transport memory properties from one list

to another.

Since this call is not context based, the library will not be able
to perform checks for correct page alignment, you have to do that
yourself. Especially, note that

SetPropertyList()
- which attaches

a memory map to a context - does not perform any check on this
list either. Hence, *NOT* checking for page alignment here might
result in an invalid context if you try to attach an incorrectly
aligned list to a context later on.

BUGS

SEE ALSO

SetPropertyList()
,
ReleaseMapping()
,
SetProperties()
,

SetPropertiesMapping()

1.41 mmu.library/SetPropertiesMapping

NAME
SetPropertiesMapping - transfer properties from a map list

to a context

SYNOPSIS
fine = SetPropertiesMapping (ctx, list, base, length, mask);
d0 a0 a1 d0 d1 d2

BOOL SetPropertiesMapping (struct MMUContext *, struct MinList *,

ULONG, ULONG, ULONG);

FUNCTION
Copy the properties of a memory map to a context, thru a mask.
This is equivalent to

SetProperties()
, except that the source

data is contained in a memory map instead given as function
arguments. This function is reverse to

mmu 58 / 77

CopyContextRegion()
.

INPUTS
ctx - destination context whose memory map shall be set.
list - the source memory map, containing the data to be

transfered.
base - base address of the memory region whose properties are

to be copied.
length - length of the memory region in bytes whose properties

will be transfered.
mask - a mask of property bits, see the

SetProperties()
function for a detailed explanation. A zero bit in this

mask means that the corresponding property in the
destination will be left alone and will remain unchanged.

RESULTS
a boolean success/failure indicator, TRUE for success. On failure,
the destination context will not have been touched at all.

NOTES
This call does not copy memory at all, it just defines the memory
properties of the context passed in.

Check
CopyMapping()
to transport memory properties from one list

to another, or
CopyContextRegion()
to transfer properties from a

context to a list (the other direction).

The library will not be able to perform checks for correct page
alignment, you have to do that yourself.

BUGS

SEE ALSO

SetPropertyList()
,
ReleaseMapping()
,
SetProperties()
,

CopyContextRegion()

1.42 mmu.library/SetMappingProperties

NAME
SetMappingPropertiesA - set memory attributes in a memory map.

SYNOPSIS

mmu 59 / 77

result = SetMappingPropertiesA(list, flags, mask, lower, size, tags);
d0 a0 d1 d2 a1 d0 a2

int SetMappingPropertiesA(struct MinList *, ULONG, ULONG,
ULONG, ULONG, struct TagItem *);

result = SetMappingProperties(list, flags, mask,
lower, size, tag1, ...);

int SetMappingProperties(struct MinList *, ULONG, ULONG,
ULONG, ULONG, Tag tag1, ...);

FUNCTION
This call sets attributes of a certain memory range of a given
memory map.

INPUTS
list - a minlist structure keeping the memory map to be altered.
flags - a binary flags field for the attributes to define. Check

SetProperties()
for details about the defined bits.

mask - A bit mask of the attributes to be changed.
lower - The lower boundary of the logical address to be modified.
size - Size of the region to be modified.
tags - A tag array with additional data, identical to the

tags defined for
SetProperties()
.

RESULTS
Unlike

SetProperties()
or

SetPageProperties()
, this does not

return a boolean value! The result code is 0 on failure, and
different from zero on success, though. To be more precise, this
routine will return "1" in case of success, and "2" in case the
memory map was really altered and is now "dirty", hence upper
software layers might require a "rebuild".

NOTES
This call really doesn’t do anything to the MMU, it is just an
administration call to modify a memory map - a handy data structure
you might want to use for your own memory administration. Its
context-based equivalent

SetProperties()
will, hence, adjust the

memory map which is kept by a context, and
SetPageProperties()

will perform the same operation truely on the hardware.

Since this call is not context based, the library will not be able
to perform checks for correct page alignment, you have to do that

mmu 60 / 77

yourself. Especially, note that
SetPropertyList()
- which attaches

a memory map to a context - does not perform any check on this
list either. Hence, *NOT* checking for page alignment here might
result in an invalid context if you try to attach an incorrectly
aligned list to a context later on.

BUGS

SEE ALSO

SetPropertyList()
,
ReleaseMapping()
,
SetProperties()
,

SetPageProperties()
,
GetMappingProperties()

1.43 mmu.library/GetMappingProperties

NAME
GetMappingPropertiesA - read memory attributes from a memory map.

SYNOPSIS

flags = GetMappingPropertiesA(list, lower, tags);
d0 a0 a1 a2

ULONG GetMappingPropertiesA(struct MinList *, ULONG,
struct TagItem *);

result = GetMappingProperties(list, lower, tag1, ...);

ULONG GetMappingProperties(struct MinList *, ULONG, Tag tag1, ...);

FUNCTION
This call reads the page properties of a certain address in
memory from a memory map. It is the counterpart of

SetMappingProperties()
and the memory map analogue of

GetProperties()
.

INPUTS
list - a MinList holding the memory map, obtained from either

GetMapping()

mmu 61 / 77

,
DupMapping()
or

NewMapping()
.

lower - the logical address of the address to investigate.
tags - additional tags, identical to those defined for

GetProperties()
. Check the documentation of this

function for details.

RESULTS
Returns a binary flags field for the attributes to define. See

SetProperties()
for details.

NOTES
This call is the analogue of the

GetProperties()
call. It operates

directly on memory maps, unlike the former which operates only on
the memory map of a context. This function does not require page
alignment because the mmu.library does not have a context to check
the alignment restrictions, but you should note that a memory map
that is to be attached to a context with DefineMapping() *HAS* to
be correctly aligned.

This routine is *NOT* safe to be called from within interrupts.

BUGS

SEE ALSO

SetMappingProperties()
,
SetProperties()
,
GetPageProperties()
,

GetProperties()

1.44 mmu.library/SetPropertyList

NAME
SetPropertyList - re-install a backup memory map

SYNOPSIS
SetPropertyList (context, list);

a0 a1

void SetPropertyList (struct MMUContext * , struct MinList *);

mmu 62 / 77

FUNCTION
This call re-installes a property list, i.e. a complete memory
map of a context, obtained from

GetMapping()
before.

INPUTS
context - the context the list should be installed in.

This should be the same context the list was
taken from.

list - the property list to install.

This list *MUST* have been obtained with
GetMapping()
before.

RESULTS
Nothing. The big advantage of this call is that it cannot fail.

NOTES
The property list will become part of the context and is empty
after this call. You can’t re-use it for that reason. However,
you still need to call

ReleaseMapping()
with the list pointer

you’ve obtained before.

For additional tips how this function should be used, see the

GetMapping()
function; especially, you can only un-do changes

to the software abstraction level of a MMU-tree, and only as
long as you haven’t called

RebuildTree()
to translate these

into hardware MMU tables. Trying to un-do these changes with
SetPropertyList() will fail, and it will even fail if you call

RebuildTree()
afterwards. SetPropertyList() *does not* inform

the software abstraction level about any changes, it is just a
quick un-do operation. (For the experts: It even re-installs
the "dirty" flags).

BUGS

SEE ALSO

GetMapping()
,
ReleaseMapping()
,
RebuildTree()

mmu 63 / 77

1.45 mmu.library/GetMMUType

NAME
GetMMUType - return the type of the MMU available in the system.

SYNOPSIS
mmu = GetMMUType();

char GetMMUType(void);

FUNCTION
Returns an identifier for the MMU available in the system or
NUL in case no MMU is installed.

INPUTS

RETURNS
a character identifying the MMU type:

MUTYPE_NONE no working MMU detected.
MUTYPE_68851 a 68020 system with an external 68851

MMU.
MUTYPE_68030 a 68030 MMU.
MUTYPE_68040 the internal 68040 MMU.
MUTYPE_68060 the 68060 MMU.

NOTES
The mmu library is smart enough to detect EC processors without a
working MMU, but the library does not detect multiple CPUs in the
system. (How?)

BUGS

SEE ALSO
mmu/mmubase.h

1.46 mmu.library/SuperContext

NAME
SuperContext - find the supervisor context for a given context.

SYNOPSIS
super = SuperContext(context);
d0 a0

struct MMUContext * SuperContext(struct MMUContext *);

FUNCTION
Returns the context that manages the supervisor mode for the user
mode context passed in.

INPUTS
A user mode context or NULL for the current context.

mmu 64 / 77

RETURNS
A pointer to the context managing the supervisor type accesses with-
in the current context.

NOTES
All contexts build by CreateMMUContext are by default user mode
contexts. The current version of the library manages one global
supervisor tree, and optionally private supervisor trees for private
contexts if you ask for one on context creation. This is different
to former releases!

To find the public supervisor mode context, call
DefaultContext()

first and pass in its return value to this function.

BUGS

SEE ALSO

DefaultContext()
,
CreateMMUContext()

1.47 mmu.library/DefaultContext

NAME
DefaultContext - get the global default context

SYNOPSIS
public = DefaultContext();
d0

struct MMUContext * DefaultContext(void);

FUNCTION
Returns the global default user mode context which is used for
tasks that are not attached to any other private context.

INPUTS

RETURNS
A pointer to the context managing the user mode accesses for
"context less" tasks.

NOTES
A task is by default part of this default context unless you
call

EnterMMUContext()
and attach it to a different context.

Note that you might have to enter even the default context
explicitly to be able to use certain features of the exception
hook mechanism.

mmu 65 / 77

BUGS

SEE ALSO

SuperContext()

1.48 mmu.library/WithoutMMU

NAME
WithoutMMU - execute a short subroutine with the MMU disabled.

SYNOPSIS
result = WithoutMMU(userFunc);
d0 a5

ULONG WithoutMMU(void *);

FUNCTION
Executes a small assembly language routine pointed to in a5
in supervisor mode, with all interrupts disabled, and the MMU
disabled. All registers are preserved by this call.
The function must end with an RTS instruction.

INPUTS
userFunc - A pointer to a *short* assembly language routine,

ending with RTS. The function has full access to
all registers.

RETURNS
whatever was left in register d0 by the called function.

NOTES
This is a low-level function. Remember that disabling the MMU
might or might not be what you want, especially if memory is
remapped.

Note that this function works even without a MMU. It just calls the
routine in a5 in this case.

BUGS
Big trouble if the supervisor stack is in remapped memory.

SEE ALSO
exec/Supervisor(),

RunOldConfig()

1.49 mmu.library/RunOldConfig

NAME
RunOldConfig - execute a short subroutine with the old MMU configuration. (V42 ←↩

)

mmu 66 / 77

SYNOPSIS
result = RunOldConfig(userFunc);
d0 a5

ULONG RunOldConfig(void *);

FUNCTION
Executes a small assembly language routine pointed to in a5
in supervisor mode, with all interrupts disabled, and the MMU
configuration the library found when it was started. This could
or could not be a disabled MMU.
The function must end with an RTS instruction.

INPUTS
userFunc - A pointer to a *short* assembly language routine,

ending with RTS. The function has full access to
all registers.

RETURNS
whatever was left in register d0 by the called function.

NOTES
This is a low-level function. Remember that reloading the MMU
with the last MMU configuration might or might not be what
you want, especially if memory is remapped or the MMU tables of
the old configuration has been released.

Note that this function works even without a MMU. It just calls the
routine in a5 in this case.

BUGS
Big trouble if the supervisor stack is in remapped memory.

SEE ALSO
exec/Supervisor(),

WithoutMMU()

1.50 mmu.library/SetBusError

NAME
SetBusError - define the bus error handler.

SYNOPSIS
SetBusError (newfuncptr , oldfuncptrptr);
d0 a0 a1

void SetBusError (void (*)() , void (**)());

FUNCTION
This defines the bus error handler which is called in case the
MMU library exception handler was not able to handle the fault.

This happens for true physical bus errors, errors initiated by

mmu 67 / 77

the unsupported TAS, CAS and CAS2 instructions using "locked
transfers" not supported by the amiga hardware, and MOVE16 in-
structions causing an access fault.

The default bus error handler is whatever the library finds in
the autovectors of the CPU when starting up. It is usually the
exec fault handler which presents the nice guru 80000002.

INPUTS
newfuncptr - A pointer to the new bus error handler. It is

called without any parameters in supervisor state,
with the exception stack frame on the stack.

oldfuncptrptr - A pointer to a pointer filled in with the previously
defined handler, or NULL.

RETURNS

NOTES
The function pointer is guaranteed to be flushed to memory by
the library, the function pointer pointer could be used, for
example, to modify the destination of a JMP instruction.

The bus error handler *MUST BE IMMEDIATELY* ready for run after
this function has to be called.

This is a low-level function. You do not want to call it.

BUGS

SEE ALSO

1.51 mmu.library/GetMMUContextData

NAME
GetMMUContextData - read MMUContext specific data

SYNOPSIS
GetMMUContextData (ctx , id);
d0 a0 d0

ULONG GetMMUContextData (struct MMUContext * , ULONG);

FUNCTION
This function reads various parameters of the MMU context,
indexed by an ID from mmu/mmutags.h. All legal tag items
of CreateMMContext() are available, plus the following:

MGXTAG_PAGESIZE - Return the page size in bytes
of the input context. Unlike
MCXTAG_PAGEBITS, this is *NOT*
an exponent. This is identical
to

GetPageSize()
.

mmu 68 / 77

MGXTAG_REMAPSIZE - Returns the alignment restriction
for remapped memory to be added to
the exec memory free list. This is
identical to

RemapSize()
.

MGXTAG_ROOT - Return the pointer to the root of
the MMU tree. You have to cast the
result to an ULONG *.
Note that you DO NOT WANT to modify
this tree directly.

MGXTAG_CONFIG - Returns the pointer to a
struct MMUConfig * specifying the
complete MMU configuration for
this context. You usually DO NOT
NEED to touch this.

INPUTS
ctx - A pointer to a struct MMUContext *.

id - An ID specifying which data you want to read.
NOTE THAT THIS IS NOT A TAG LIST, but just the
tag item id from mmutags.h.

RETURNS
the data requested. You need to cast it to the correct type.

NOTES

BUGS

SEE ALSO

CreateMMUContext()
, mmu/config.h

1.52 mmu.library/SetMMUContextData

NAME
SetMMUContextData - define MMU context specifications on the fly

SYNOPSIS
SetMMUContextDataA (ctx , tags);

a0 a1

SetMMUContextData (ctx , ...);

void SetMMUContextDataA (struct MMUContext * , struct TagItem *);

void SetMMUContextData (struct MMUContext * , Tag tag1 , ...);

FUNCTION

mmu 69 / 77

This function allows to adjust *some* of the MMUContext
specifications on the fly. The following tag items of the

CreateMMUContext()
call are supported:

MCXTAG_BLANKFILL - define the data to read from the
dummy "blank" pages. Note that
a *working* program should never
read this data.

MCXTAG_EXECBASE - specify whether or not page 0 will
be threated specially and accesses
to the first Kbyte should be
emulated. If set to FALSE, the
first page will be threated as all
other pages.

MCXTAG_ZEROBASE - Specify a base address for where
possibly emulated zero page accesses
have to be redirected to. This address
is usually ignored unless the zero-
page is invalidated and MCXTAG_EXEBASE
is TRUE. For the messy details, check
the

CreateMMUContext()
autodocs.

MCXTAG_LOWMEMORYLIMIT - Define the lower boundary of valid
memory, used to emulate access to the
zero page. Defaults to the lower
boundary of chip memory. (V42)

No other tag items are valid here.

INPUTS
ctx - A pointer to a struct MMUContext *.

tags - A tag list containing the parameters to be
adjusted.

RETURNS

NOTES

BUGS

SEE ALSO

CreateMMUContext()
, exec/memory.h

1.53 mmu.library/BuildIndirect

mmu 70 / 77

NAME
BuildIndirect - build a true hardware page descriptor.

SYNOPSIS
descr = BuildIndirect (ctx , address , props);
d0 a0 d0 d1

ULONG BuildIndirect (struct MMUContext * , ULONG , ULONG);

FUNCTION
This function builds a true hardware page descriptor, to be used for
the MAPP_INDIRECT property.

INPUTS
ctx - the MMUContext handle in which this descriptor is to

be used as the destination of a MAPP_INDIRECT descriptor.

address - in case this descriptor is "valid", this is the
PHYSICAL destination address, to be told to the MMU, to
which accesses will be redirected to. Unlike

SetProperties()
, there is *NO* MAPP_REMAPPED bit. In

case you do not want remapping, set this to the logical
address. DO NOT LEAVE THIS BLANK or accesses will be
redirected to address 0 - which is most likely not want
you want. Note that this address must be, as all other
addresses the MMU cares about, page aligned!
In case this descriptor is of invalid type, the address
can be used for your purposes, but note that this MUST
STILL be a number which is page aligned for the given
context. It *MAY NOT* be arbitrary.

props - Properties for the descriptor to be defined.
NOTE THAT THIS IS A TRUE HARDWARE DESCRIPTOR! The
library WILL NOT BE ABLE to help you out by emulating
missing features of one MMU or another. Instead, it will
just ignore them. This means for you, specifically,
that only a minor subset of the usual properties may be
used safely here, and that parsing the hardware
properties later on with

GetIndirect()
might result in

different properties than you intended because of
missing features of the MMU in use. To be precise, the
following properties *might* be available - meaning that
all others ARE NOT!

MAPP_WRITEPROTECTED - The page will be write protected.
Writes to this area will cause a segmentation fault.

MAPP_USED - The "used" bit of the pages
will be set. The CPU will set this bit automatically
as soon as the pages are accessed.

MAPP_MODIFIED - The "modified" bit of the pages
will be set. The CPU will set this bit automatically

mmu 71 / 77

as soon as a write is performed to the page in question.
DO NOT SET THIS BIT TOGETHER WITH MAPP_WRITEPROTECTED
OR WITHOUT MAPP_USED or the CPU might hang.

MAPP_INVALID - The page will be marked as
invalid. Accessing it will invoke the bus error hook.
See below for how to mark this page as REMAIRABLE. Note
that the MAPP_REPAIRABLE bit is *here* not available.

MAPP_CACHEINHIBIT - The page will be marked as non-
cacheable.

MAPP_IMPRECISE - The page will be marked as
"imprecise exception". MAPP_CACHEINHIBIT is mandatory
in this case or this flag does nothing. Only avail-
able for the 060, ignored and read as zero
by all others.

MAPP_NONSERIALIZED - The page will be marked as
serialized. MAPP_CACHEINHIBIT is mandatory if this
property is selected. Only available for the 040,
ignored and read as zero by all others.

MAPP_COPYBACK - The page will be marked as
"copyback" instead of "writethrough". Generally re-
commended since this is faster for the ’40 and ’60.
MAPP_CACHEINHIBIT *MUST* be disabled for this to work.
Only available for the 040 and 060, ignored and read
as zero by others.

MAPP_USERPAGE0 - Set user page attribute 0,
only available for the 040 and 060, ignored and read
as zero by all others.
The status of this bit appears on special pins of the
CPU and might be required by some hardware, so don’t
play with this.

MAPP_USERPAGE1 - Set user page attribute 1,
see above for details.

MAPP_GLOBAL - DIFFERENT TO
SetProperties()

and others!
Set the GLOBAL bit in the page descriptor, only avail-
able for the 040 and 060, ignored and read as zero by
all others.
Setting this bit means that certain specialized
instructions will not flush this descriptor from the
cache (the ATC) of the MMU.
The mmu.library writes only descriptors without this
bit set and does not use these instructions. It will
always flush descriptors independent of the G bit.
There is little use of this bit.

RESULTS
a page descriptor for the current MMU in use, designed and to be
used for as the destination of an MAPP_INDIRECT descriptor. NOT

mmu 72 / 77

to be used as a true page descriptor, and NOT to be used as a
table descriptor.
In case the library finds no MMU or the alignment restrictions
aren’t satisfied, it will return BAD_DESCRIPTOR (0x03), it
WILL NOT return NULL as this is a "valid invalid" descriptor.

NOTES
Note specifically that MAPP_SUPERVISORONLY *IS NOT* supported. The
mmu.library enforces a distinct user/supervisor model and as such
you might want to install an invalid descriptor into the user table
and a valid descriptor into the supervisor table to emulate this
feature. True "supervisor only" descriptors are available for the
040 and 060 anyways, but this "emulation" works for all MMUs.

MAPP_REMAPPED is not supported either because you have to specify
a physical destination address in all cases, even if no remapping
has to be performed. Use the logical address as physical address in
case remapping is not desired.

MAPP_REPAIRABLE is not available because this flag is in fact an
emulation provided by the library. However, you may make access
faults to this page repairable by setting the MAPP_REPAIRABLE bit
for the MAPP_INDIRECT descriptor that POINTS to the descriptor
you’re building by this call. This will be enough to inform the
library about how to treat access faults.

How to use this function:

Allocate four bytes of memory, long-word aligned, or even 16 bytes
line (16 byte) aligned in case you want to read back the descriptor
later by

GetIndirect()
and calculate its TRUE PHYSICAL location with

PhysicalLocation()
. Use the return code of this function to mask in

your properties, DO NOT ASSUME fixed properties. Build a descriptor
with BuildIndirect() and install it into this memory by calling

SetIndirect()
. *DO NOT* write it to the memory yourself!

Due to CPU caching effects, this must be done by the library.
Then build a MAPP_INDIRECT descriptor, and tell the library with the
MAPTAG_DESCRIPTOR tag of

SetProperties()
to make it point to your

memory. In case you want access faults on this to be repairable,
set the MAPP_REPAIRABLE bit for this call. In case you want it write
protected but want to ignore write accesses, set MAPP_ROM, too. Then
call

RebuildTree()
as usual. In case you want to exchange descriptors

really fast - this is after all what indirect descriptors are
designed for - build all descriptors you require in a first step
and keep them. A single call to

SetIndirect()

mmu 73 / 77

will exchange them
VERY RAPIDLY which is ideal for certain applications.

BUGS
Much more must be said about this function. It is definitely an
advanced feature, so don’t play with this in case you don’t know
what it does.

SEE ALSO

SetIndirect()
,
SetIndirectArray()
,
GetIndirect()

1.54 mmu.library/SetIndirect

NAME
SetIndirect - Write a page descritor to memory

SYNOPSIS
SetIndirect (destination , logical , descriptor);

a0 a1 d0

void SetIndirect (ULONG *, ULONG, ULONG);

FUNCTION
Write a page descriptor, used as the destination of one or
several MAPP_INDIRECT descriptors, out to memory and make the MMU
aware of the change.

INPUTS
destination - the memory location to which the descriptor

should be written to. This is the same address
specified by MAPTAD_DESCRIPTOR in the corresponding

SetProperties()
call. NOTE THAT THIS IS A

PHYSICAL, NOT A LOGICAL ADDRESS.
This must be long-word aligned, or even 16 bytes
line-aligned (16 bytes aligned) in case you want
to read the descriptor later with

GetIndirect()
.

logical - The logical address covered by this descriptor,
i.e. the address of the page which this
descriptor is managing. In case you installed
the same descriptor for several logical addresses,
specify -1L (this will be slower, though.)

descriptor - The descriptor to install.

mmu 74 / 77

RESULTS
doesn’t return a result.

NOTES
Do NOT try to install a descriptor yourself, even though this

seems to be more effective. Somewhat more must be done than just
writing the descriptor to memory. This call ensures that the
descriptor is really written out to memory, and really fetched by
the MMU. Specifying -1L as logical address is possible and supported
but *slightly* less efficient than giving the correct
logical address.
This call DOES NOT ensure that all data in the page to be modified
is really written out. Hence, if you change the cache mode, the
protection status or the validity status of a page, you should call
CacheClearU() or CacheClearE() before. This step is, however, not
required required in case you just changed the physical destination.
The library keeps then care about the necessary cache operations
itself.

This call is *very* effective, there is little reason to try this
yourself, not counting the portability problems.

In case you want to install more than about four descriptors at once,
you should consider using

SetIndirectArray()
which causes even less

overhead in this situation.

BUGS

SEE ALSO

SetIndirectArray()
,
GetIndirect()
,
BuildIndirect()

1.55 mmu.library/SetIndirectArray

NAME
SetIndirectArray - Write multiple page descritors to memory

SYNOPSIS
SetIndirectArray (destination , descriptors , number);

a0 a1 d0

void SetIndirectArray (ULONG *, ULONG *, ULONG);

FUNCTION
Write a complete array of page descriptors at once, re-defining
the mapping for more than one page, and make the MMU aware of the
changes.

mmu 75 / 77

INPUTS
destination - an array in memory which keeps the true hardware

MMU descriptors. This address, and all subsequent
addresses must have been used in the corresponding

SetProperties()
call to setup the descriptor.

NOTE THAT THIS IS A PHYSICAL ADDRESS. Note further
that it is up to you to ensure that the
(obviously continuous) array of logical addresses
is not fragmentated into several physical memory
blocks. If this happens, you would have to call
this routine several times, once for each dis-
continuous block.
This must be long-word aligned, or even a multiple
of a 16 byte line-aligned array in case you want
to read the descriptor later with

GetIndirect()
.

descriptors - An array of pre-calculated descriptor values to be
filled in. This is a logical address. Effectively,
this call copies this array to its first argument.

number - The number of the descriptors to be defined. Zero
is allowed here, and is a no-op.

RESULTS
doesn’t return a result.

NOTES
Do NOT try to install descriptors yourself, even though this

seems to be more effective. Somewhat more must be done than just
writing the descriptors to memory. This call ensures that the
descriptors are really written out to memory, and really fetched by
the MMU. Note that this call does not require the logical address
of the page(s) which are about to be changed, quite different to

SetIndirect()
. It will be therefore slower than
SetIndirect()
if

only very descriptors are to be written.
This call DOES NOT ensure that all data in the page(s) to be modified
is really written out. Hence, if you change the cache mode, the
protection status or the validity status of a page, you should call
CacheClearU() or CacheClearE() before.
This step is not required in case you just change the physical
destination of the pages involved, the library is able to handle
this transparently.

This call is *very* effective, there is little reason to try this
yourself, not counting the portability problems.

If you install only one descriptor,
SetIndirect()
is more effective.

mmu 76 / 77

Note further that this call does not require the logical address of
the page(s) to be provided, it will flush the complete ATC of the
MMU and is therefore slower if only a few pages or even a single page
has to be modified.

BUGS

SEE ALSO

SetIndirect()
,
GetIndirect()
,
BuildIndirect()

1.56 mmu.library/GetIndirect

NAME
GetIndirect - Read a hardware page descritor from memory

SYNOPSIS
GetIndirect (ctx , adt , address);

a0 a1 d0

void GetIndirect (struct MMUContext *,
struct AbstractDescriptor *, ULONG *);

FUNCTION
Reads a true hardware page descriptor, used as the destination
of one or several MAPP_INDIRECT descriptors, and places its data
in the AbstractDescriptor structure.

INPUTS
ctx - the MMU context handle this page descriptor

belongs.
adt - An abstract table descriptor, to be filled

out with the descriptor data.
address - the address from where the descriptor is to

be read. This is the same address which has been
passed as argument to the MAPTAG_DESCRIPTOR
tag of the

SetProperties()
call when building

the indirect descriptor.
All descriptors to be read by this function must
reside in a separate cache line, i.e. must be
part of a line (16 byte) aligned array which is a
multiple of 16 bytes long. In all other cases,
this call could return improper results due to
cache clashes.

RESULTS
no direct result code, but the AbstractDescriptor is filled
in as follows:

mmu 77 / 77

struct AbstractDescriptor {
ULONG atd_Pointer;
ULONG atd_Properties;
UWORD atd_LowerLimit;
UWORD atd_UpperLimit;
UBYTE atd_ThisType;
UBYTE atd_NextType;
UWORD atd_reserved;

};

atd_Pointer is either the physical address the accesses to the
page(s) this descriptor is installed for are redirected to, or
the user data if this descriptor is of invalid type. This is the
same value that was passed in as "address" argument to the
corresponding

BuildIndirect()
call.

atd_Properties is the set of MMU properties read from the
descriptor. This NEED NOT to be identical to the properties setup
by

BuildIndirect()
, for two reasons: First, the MMU sets the

USED and MODIFIED attributes as soon as any access or a write
access happens to the page(s) handled by the descriptor. Second,
not all MMUs support all properties. Unavailable properties are
ignored by

BuildIndirect()
, and read as zero by this function.

All other fields are currently not documented and should not be
read.

NOTES
Do NOT try to read a descriptor yourself, even though this

seems to be more effective. Somewhat more care must be kept for
doing this. NOT following this rule might even lock up your
machine!

This call is *very* effective, there is little reason to try this
yourself, not counting the portability problems.

BUGS

SEE ALSO

SetIndirect()
,
BuildIndirect()
, mmu/descriptor.h

	mmu
	mmu.doc
	mmu.library/--Background--
	mmu.library/--Patches--
	mmu.library/CreateMMUContext
	mmu.library/DeleteMMUContext
	mmu.library/EnterMMUContext
	mmu.library/LeaveMMUContext
	mmu.library/CurrentContext
	mmu.library/AddContextHook
	mmu.library/RemContextHook
	mmu.library/AddMessageHook
	mmu.library/RemMessageHook
	mmu.library/ActivateException
	mmu.library/DeactivateException
	mmu.library/GetPageSize
	mmu.library/RemapSize
	mmu.library/SetProperties
	mmu.library/SetPageProperties
	mmu.library/RebuildTree
	mmu.library/RebuildTrees
	mmu.library/GetProperties
	mmu.library/GetPageProperties
	mmu.library/AllocAligned
	mmu.library/LockMMUContext
	mmu.library/UnlockMMUContext
	mmu.library/AttemptLockMMUContext
	mmu.library/LockContextList
	mmu.library/UnlockContextList
	mmu.library/AttemptLockContextList
	mmu.library/AllocLineVec
	mmu.library/PhysicalPageLocation
	mmu.library/PhysicalLocation
	mmu.library/DMAInitiate
	mmu.library/DMATerminate
	mmu.library/GetMapping
	mmu.library/ReleaseMapping
	mmu.library/NewMapping
	mmu.library/CopyMapping
	mmu.library/DupMapping
	mmu.library/CopyContextRegion
	mmu.library/SetPropertiesMapping
	mmu.library/SetMappingProperties
	mmu.library/GetMappingProperties
	mmu.library/SetPropertyList
	mmu.library/GetMMUType
	mmu.library/SuperContext
	mmu.library/DefaultContext
	mmu.library/WithoutMMU
	mmu.library/RunOldConfig
	mmu.library/SetBusError
	mmu.library/GetMMUContextData
	mmu.library/SetMMUContextData
	mmu.library/BuildIndirect
	mmu.library/SetIndirect
	mmu.library/SetIndirectArray
	mmu.library/GetIndirect

